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A Time Domain Model for Flicker Analysis

A. P. Sakis Meliopoulos, Fellow

Georgia Institute of Technology
Schoo! of Electrical and Computer Engineering
Atlanta, GA 30332-0250

Abstract This paper presents a time domain model of an electric
power system for the purpose of studying voltage magnitude variations
due to the operation of an arc furnace. The time domain model of the
arc consists of the nonlinear characteristics of the arc and the associated
absorbed energy. The rms value of the voltage can be computed
anywhere in the system. The voltage variation is compared to flicker
threshold values as defined in standards. Typical results in a test
system are presented in the paper.

1. Introduction

Operation of nonlinear loads cause distortion of the sinusoidal
waveform of the voltage and current which are quantified with
harmonics. If the nonlinear load is also varying with time, as is the case
of arc furnace loads, the rms value of the electric load is also varying.
Lighting, which is affected by the voltage variations, may flicker which
cause a certain degree of unpleasantness. This phénomenon has been
known since the early days of power systems. Advances in power
system technology and interconnections resulted in large power systems
and the minimization of flicker type behaviour of a power system.

2. Modeling of Power System Devices

Models of power system elements are derived in direct phase quantities
(a b, c,and n (neutra]) for three phase neutrals or L1, L2 and NN
(neutral) for secondary service systems). The modeling procedure starts
from a set of algebraic-differential-integral equations which describe a
power system element. These equations are transformed into (a) a
quadratic state space model or (b) a quadratic frequency domain model.
These models are used to obtain the overall network solution with a
Newton type algorithm. Details of the model and network solution are
presented next followed by examples.

2.1 Time Domain Device Model

Any power system device is described with a set of algebraic-
differential-integral equations. It is always possible to cast these
equations in the following general form:

i _ fl(\./,}.’,V,y,U) (1)
0 - fz(\'/,)'/,V,y,u)

where  i: vector of terminal currents,
v : vector of terminal voltages,
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y : vector of device interna! state variables
u : vector of independent controls.

Note that this form includes two sets of equations which are named
external equations and internal equations respectively. The terminal
currents appear only in the external equations. Similarly, the device
states consist of two sets: external states (i.e. terminal voltages, v(t) )
and internal states ( i.e. y(t) ). The set of equations (1) is consistent in
the sense that the number of external states and the number of internal
equations equals the number of external and internal equations
respectively. ’

Equations (1) are integrated using a suitable numerical integration
method. Assuming an integration time step h, the result of the
integration is approximated with a second order equation of the
form:

| _fan ap v 1 . by byp [ V(1)
[0 ]—Lzl azz}[ym}ZdIEg(V(t)’y(t))[bzl bzz][y(t)]

1{¢ ¢z, v(t) b;(t—h)
¥ ?[Czl czz}d'ag(v(t)’ y“))[y(t)] * [bz(‘ - h)]

@)

where bj(t-h), bp(t-h) are past history functions.

2.3 Example: Arc Model

The arc model consists of a nonlinear relationship between the arc
current and arc voltage, i.e.

ity =k (v(t)/vp1)*1 + ka(v(t)/vp2)*2

where i(t) is the arc current
v(t) is the arc voltage
ki, a1, k2, a9, vg1,and vg2 are model parameters

3. Network Solution

The network solution is obtained by application of Kirchoff’s current
law at each node of the system. This procedure results in the set of
equations (3). To these equations, the internal equations are appended
resulting to the following set of equations.

ZAkik(t)=Iinj ®3)
k

internal equations of all devices )

where I, is a vector of nodal current injections, AK is a component
incidence matrix with: '




1, if terminal j of component k is connected to node i

()

ik (t) are the terminal currents of component k.

0, otherwise

It

The component k terminal voltage vk (t) is related to the nodal voltage
vector v(t) by:

vE)y=(A")Tv() (5)

Upon substitution of device equations (2), the set of equations (3) and
(4) become a set of quadratic equations. These equations are solved
using Newton’s method. Specifically, the solution is given by the
following expression.

v()] [vo) N [An sz:l . l'B“ B12:|d' o I,
[y(t)J_[y%)] {AZ, A + )y dia B, By iag(v™(1),y" (1))

-1
. B, Bj; Cn G, 0 By
+ % diag(v°(1), yO(t)){Bn B,, :| ¥ [Czl Czjdlag(VO(t)’ Y (t)?} [Bé

where :

vO(t), yo(t) are the values of the state variables at the previous

iteration, B?,Bg represents the mismatch of the system equations of

the previous iteration, and 1 is a column vector with all entries equal to
1.

Note that at each time step, the quadratic device model is an
approximation of the nonlinear device equations. For this reason, the
above procedure utilizes an iterative algorithm which is applied at each
time step. The algorithm is illustrated in Figure 1.

4. Applications

The proposed method has been applied to an example power systems
with an arc furnace. The single line diagram of the system is illustrated
in Figure 2. For this system we compare the harmonics and flicker at
BUS10, BUS20, and BUS30. The computed flicker is compared to the
allowable limits as described in [13]. For convenience the permissible
flicker curves are presented in Figure 3.

Figure 4 illustrates the time wavform and the rms value (over a sliding
window of 16.6667 mseconds) of the voltage at buses BUS20 and
BUS30 (see Figure 2). Figure 5 illustrates the rms values of the
voltages at the three buses of the system (BUS20, BUS30 and
BUS32KYV) as well as the variation of the electric real power absorbed
by the furnace. Note that the power varies with a frequency of 5 Hz.
The maximum power is 18.3 MW per phase and the minimum is 13.1
MW per phase. Note that in the model we can simulate any variation of
the arc power, including random variations. However, for the
simulation shown we elected to use a periodic variation with frequency
5 Hz. The rms values of the voltages vary in the ranges (61.2-64.3 kV),
(58.8-62.7 kV) and (15.5-17.0 kV) for the buses BUS20, BUS30 and
BUS32KV respectively. The percentage variations are 4.06, 6.63 and
9.68% respectively. It is important to note that the rms value of the

voltage variation is high near the furnace and decreases for buses
further away from the furnace. This is to be expected in a system that
does not have capacitor banks. In systems with capacitor banks,
however, the voltage variation profile may be different. With reference
to Figure 3, the computed voltage variations will be noticed as flicker
above the threshold of perception (at 5 Hz the threshold of perception is
about 1.3%). . ‘

5. Summary and Conclusions

A time domain model for computing flicker due to changing electric
loads, such as electric furnace loads, has been presented. The model is
based on a quadratic equivalent representation of each element in the
system and subsequent simultaneous solution of all equations. When
there are nonlinear elements, such as an electric furnace, this approach
yields a method with quadratic convergence characteristics. The result
is an accurate and efficient computational method. The solution
provides the waveforms of voltages and currents anywhere in the
system. From the waveforms, any other desirable quantity can be
computed such as rms values, real power, reactive power, distortion
power, etc. Typical results have been presented in the paper. Our
experience with this method indicates that the use of quadratic
equivalent representation for each element of the system results in a
robust real time simulation method.
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Abstract: This paper proposes a systematic way to analyze
power system transient problems using wavelet transforms. We
name this approach WBTA (Wavelet Based Transient Analysis).
The methodology is being implemented using Daubechies
wavelets. The results obtained using this method are compared
to the solution computed from a numerical time domain analysis.
A concise description of this method will be presented.

Transforms, Daubechies wavelets,

Key Words: Wavelet

transient.
1.0 Introduction

Electric power systems are subject to many types of
disturbances that result in transients. Electrical transients result
in abnormal voltages (overvoltages) and abnormal currents
(overcurrents). For example, physical phenomena such as
lightning may generate transient overvoltages and abnormal
conditions such as electrical faults (e.g., single line to ground,
line to line, etc.) may generate overcurrents. Overcurrents may
damage power equipment due to excessive heat dissipation,
while overvoltages may result in flashovers or insulation
breakdown, device outages, and eventual deterioration of power
system reliability. Figure-1.1 shows several common transient
signals occurring in electric power systems [1]. From the time
horizon, we see that the transients are often of short duration.
For example, the transient period is on the order of milliseconds
for a line switching transient.

There are a number of methods used to study electrical
transients. As shown in Figure 1.2, these methods are
categorized into either the time domain or the integral transform
domain [1]. In the time domain, the mathematical solution comes
directly from solving the differential equations, or by representing
the system with its equivalent resistive companion circuit which
is then solved numerically. There are many commercialized
user-friendly software packages designed to analyze electrical
transients numerically such as the ElectroMagnetic Transients
Program (EMTP) and the Alternative Transients Program (ATP).
The EMTP provides many advantages over other harmonic and
transient simulation programs such as allowing the user to
complete steady-state and transient simulations with the same
model. .

Wavelet Based Transient Analysis

Chien-Hsing Lee, Student Member

School! of Electrical and Computer Engineering
Georgia Institute of Technology
_Atlanta, GA 30332-0250

In the integral transform domain, the Fourier, Laplace and Z
transforms are used. The Fourier transform and the Laplace
transform are very closely related. The Laplace transform has
certain advantages over the Fourier fransform. Among these are
the ease of computing transforms, the simplicity of the
transforms themselves, the ease of including initial conditions in
the solution of differential equations, the insight into system
performance that is possible through use of the complex
frequency concept, and the ability to deal with time functions
that are not absolutely integrable [2]. However, Fourier
transforms are still required for certain types of signals and for
system analysis problems. For example, the Fourier transform
provides information concerning the frequency composition of
transient waveforms. A method which incorporates desirable
components of both domains is the Wavelet transform. Wavelet
transforms have certain advantages for analyzing  transient
signals, which will be further explored here.

In this paper, the wavelet based approach is proposed to solve
transient problems. The Daubechies wavelet is embedded within
the wavelet transform scheme. Concept of wavelet transforms
using Daubechies wavelet is introduced in Section 2. The
proposed approach is described in Section 3. The result of study
case using this proposed approach is shown in Section 4.
Conclusions are drawn in Section 5.

Type Waveshape Time Horizon
LU
Transformer a up to one
Inrush Current | E j\ j\ second
Mo,
tme
vy A
Lightning 2 )
Surge Voltage | > Microseconds
microseconds -
i A
Line Switching a m /\ Milliseconds
Translent 5 \/ .1\/ \ .
time

Figure 1.1 Examples of Transient Signals in Power
Systems.
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2.0 Introduction of Wavelet Transforms
Wavelet Series Expansion of an Arbitrary Function f(x)

Consider a wavelet series expansion that holds for the interval
0< x < 1. Note that x is a non-dimensional variable resulting from
a normalization procedure. For example, consider the
independent variable t (time) and an interval of interest [0, T].
Then we define x = t/T, where x is a normalized variable. The
interval of interest is 0 < x < 1. The wavelet expansion of an
arbitrary function f(x) in 0 <x < 1 can be written as [3]
f(x) = Ta;w;(x) 2.1)
; .
where

a, are unknown coefficients,
w;(x) are known functions (family of Daubechies’ wavelets).

In equation 2.1, w,(x) is equal to ¢(x) which is generated
recursively from the following equation [4]

0() = Zed(2x- k) (2.2)

where k is any integer, positive, zero or negative. The c's are the
Daubechies' coefficients and ¢(x) is called the scaling function.
w,(x) is equal to w(x) which is derived from ¢(x) with the following
equation {4] '

w(X) = (D d(2x+ k=N +1) (2.3)
< .

where N is the number of Daubechies coefficient and w(x) is
called the wavelet function. Note the scaling function and the

wavelet function generally do not have a closed form. Figure 2.1
shows an example of the scaling and wavelet functions for N = 4.

" The Scaling Function for the Ned

A

! \
2 ~ \
05
& /
0 < 5
\/
05
0.5 1 15 2 25 3
X
The Wavelet Function for the N=4
2
1 /

0 0.5 1 18 2 25 3

Figure 2.1 The Scaling and Wavelet Functions with Four
Daubechies Coefficients.

Subsequently, the functions w;(x), w.(x).... w,(x) are derived with
scaling and translation operations as follows:

w;(x) = w(2x),
w(x) = w(2x-1),
WS(X) = W(4x),
We(X) = w(4x-1),
wy(X) = w(4x-2),
we(X) = w(4x-3),

The coefficients a,, a,, ... represent the amplitudes of each of the
contributing wavelets in a similar manner to the Fourier series
coefficients which are the amplitudes of the various sine and
cosine terms in the classical Fourier analysis.

The selected family of Daubechies' wavelets are orthogonal, i.e.
< w(x), w(x) > = 0 for i # j, which means the inner product of w{x)
and wy(x) is equal to zero except when i = j. The coefficients a,,
a, ... can be found by multiplying equation 2.1 by w(x) and
integrating from x =0to x = 1 to get

Jowi ()F()dx = [w; (x)Za;w; (x)dx
i

thus, fori = j, we have

_ Jow; (0f (x)dx

I w2 (xdx @4




Reconstruction of an Arbitrary Function f(x)

Since we have determined the coefficients, a,, the reconstructed
function ?(x) of f(x) can now be reconstructed as follows

F(x) = a6(x) + 1 level 0
aw(x) + T level 1
aw(2x) + aw(2x-1) + 1 level 2
aw(2¥'x) + aw(2*1x-1) + ...+ aw(2*'x-3) + 1 level 3
agw(2¢1x) + a,W(24'x-1) + ... + a,W(24'%-7) + T level 4

aW(25X) + a,W(25'x-1) + ... + a,W(2*'x-15) + 1 level 5
2 W(2H1X) + 8 W(281x-1) + ... + 2W(2'x-31) + T level 6
BesW(21X) + 8W(271x-1) + ... + 3yW(27'x-63) + 1 level 7

The accuracy of the reconstructed is dependent on the number
of wavelet levels used. The original function can be
approximated more accurately by increasing the number of
levels. For example, the use of one wavelet level to reconstruct

?(x) is given by

T = 2,60 +aw() = §)
Reconstruction using two wavelet levels is then
T = T(x) +aw(@x) +aw@x-1) = §(%)
For a total of M wavelet levels, the reconstruction is

00 = §a®) + ar WM * g W@ x-1 +

e azMw(ZM'1x oM

= 2
Therefore, the higher the level of reconstruction, the closer the
reconstructed function is to the original.

3.0 The Proposed Approach

In section 1, several different methods for solving transient
problems were introduced. An alternative method to those
techniques proposed is the use of wavelet transforms. We name
this approach WBTA (Wavelet Based Transient Analysis). A
concise description of this method is presented below.

WBTA is a systematic way to analyze power system transient
problems using wavelet transforms. It consists of three steps:

1) Develop a wavelet companion equivalent circuit for
each system component, such as resistor, inductor, and
capacitor

2) Construct the wavelet equivalent network for the entire
system and determine the coefficients of the wavelet
components for all node voltages of the equivalent
system.

3) Construct the actual voltages and currents from the
wavelet component solution

3.1 Wavelet Companion Equivalent Circuit

The basic methodology for transient analysis using wavelet
transforms has been formulated in section 3.0. The methodology
is being implemented using Daubechies wavelets. The derivation
of a wavelet companion equivalent circuit for resistors, inductors,
and capacitors is described.

Network Element Wavelet Equivalent Current Model
200 1
. v g Vo) W(x) = R Z(ay —az)w;(x)
() >—— <20 | .
b(x) = R Z(ay —ag)w;(x)
a1 ]

i) L Vet

' L) = %Z (Z (ay — ag)ag)w;(x)
iy > e <120 L

Lo = -{@(; @y — 85 ot W,(¥)
b.

b1

v, ¢ v, (1)

o0 = %z(zm —ay By W, ()
(0> s <20 P

b0 =- %;(;(% — 2, )y W; (%)

C:

ci

Figure 3.1 Wavelet Equivalent Companion Circuit

Resistance

Consider a resistor as illustrated in Figure 3.1a1. The
current/voltage relationship for the resistor is

W0 = [ O~ v 0] 05t <T

For convenience, the time interval of interest [0, T] is normalized
with the transformation x = /T. The interval of interest for
variable x is [0, 1]. Upon replacement of variable t with x, the
resistor equation becomes

i\(<T) = —%[v,(xT)- v, ()1, 0<x<1

Define  §(x) = k(XT),¥4(x) = v,(xT) and ¥,(x) = v, (xT).
Then, assume the wavelet expansion of v, (x) and V,(x) in 0 <x
< 1 can be written as :

Ux) = Zl:aﬁwj(x), 0<x<1 (3.1)




« .

Vo (x) = Yayw,(x), 0<sx<1 (3.2)
]
where

ay, az are unknown coefficients,
w(x) are known functions (family of Daubechies' wavelets).

The current flowing through the resistor is

2 1 14 N ‘

W) == [V5(x)- V2(x)]1.0sx <1 (3.3)
By substituting equations 3.1 and 3.2 into equation 3.3, we have

L) = % zj;(au- —ay)w;(x) ,0<x <1 (3.4)

Note, h(x)=-k(x) = -% 2}3(811 —ay)W;(x).

Inductance

Consider an inductor as illustrated in Figure 3.1b1. The
current/voltage relationship for the inductor is

. 1t

i(t) = -'—_-g[v1(‘t) - vz(r)]dt , 0<t<T

with initial condition i,(0) =0

For convenience, the time interval of interest [0, T] is normalized
with the transformation x = t/T. The interval of interest for

variable x is [0, 1]. Upon replacement of variables t with x, the
inductor equation becomes

i, (xT) = % (T (VT — v, ATHTdR,  0<x<1

Define §(x) = i(xT), ¢, (x) = vy(xT) and ¥(x) = v,(xT).
Then, assume the wavelet expansion of ¥,(x) and ¥, (x) in 0 <x
<1 can be written as

W) = Sagw;(x), 0<x<1 (3.5)
i
U,(0) = Ta,w;(x), 0<x<1 (36)
N
where

ay, ay are unknown coefﬁcienté,
w(x) are known functions (family of Daubechies’ wavelets).

The current flowing through the inductor is
W09 = LRG0~ G,0)Ter 0sx <1 @3.7)

By substituting equations 3.5 and 3.6 into equation 3.7, we have

W) = % j;[z];a“w,-(k)—-zj,“azjwj(l)]d)\.

[ d B

2}2(31; ~ag)fpw; (A)dr (3.8)

Define f(x)= j;‘w,(x)d). , 0<x <1, where f(x) is a known function.

Thus, f(x) can be written in terms of the wavelet expansion as
follows.

fi(X) = TopWe(X), 0sx<1 ' (3.9
m

where
oy, are known coefficients,
w,(x) are known functions (family of Daubechies’ wavelets).

By substituting equation 3.9 into equation 3.8, we have

L0 == (ay - ay) TaWn(x) ,0sx<1
m

T
L7

= {-?ﬂ:[? (a1j - a2j)a’jm }Nm (X) (310)

In order to have the same index as the resistor model, the
indices j and m are replaced by r and j respectively. Thus,
equation 3.10 becomes

o T
I1(X) = —E%[?(ak _aZr)arj}Nj(x) (311)

Note, ;‘,(X) = -‘i;(x) = -%2]:[:; (@, —azr)a,j]w,-(X)

Capacitance
Consider a capacitor as illustrated in Figure 3.1c1. The
current/voltage relationship for the capacitor is
() = C2[vy() - v, (0] 0t <T
dt

with initial conditions v4(0) = v2(0) = 0,
For convenience, the time interval of interest [0, T} is normalized
with the transformation x = t/T. The interval of interest for

variable x is [0, 1]. Upon replacement of variable t with x, the
capacitor equation becomes

i\ (XT) = C—_I%;[w(xT) =V, (xT)]

Define f,(x) = i, (XT), V4(X) = v,(xT) and V,(x) = v,o(xT).
Then, assume the wavelet expansion of v,(x) and v, (x) in 0 <x
< 1 can be written as

V() = >J:a,,.w,(x) 0<x<1 (3.12)

V() = >]:azjw|(X) 0<x<1 (3.13)




where
ay, a, are unknown coefficients,
w,(x) are known functions (family of Daubechies’ wavelets).

The current flowing through the capagcitor is

i = C%[\‘l,(x)—ﬁz(x)],05x<1 e

By substituting equations 3.12 and 3.13 into equation 3.14, we
have

i =S lsa wix-
h(x) = T dxhauwj(X) ?aﬂw](x)]
Cc d
= _T.§(a“. —aﬁ)&[wi(x)] (3.15)
Define gj(x) = ad;wj(x), 0 < x < 1, where g(x) is a known

function. Thus, g(x) can be written in terms of the wavelet
expansion as follows.
gx) = LRmWn(X).0<x < 1 (3.16)
m

where
B, are known coefficients,
W,(x) are known functions (family of Daubechies’ wavelets).

By substituting equation 3.16 into equation 3.15, we have

2 C :
K(x) =?2i:(a1j —ay) %Bjmwm(x) D<x<1

= %—%[? (ay —azj)Bjm}Nm(X) (3.17)

In order to have the same index as the resistor and inductor
models, the indices j and m are replaced by r and j respectively.
Thus, equation 3.17 becomes

P = %;[{: (2 —az,)rsn-}vj(x) (3.18)

Note, 400 =-400 =~ S5 a0 - 2200 Jr 0

3.2 Wavelet Component Network Analysis

Consider a system state with its state defined by the vector of
voltages at all nodes of the system, ' '

v4(t)

v(t)= sz(t) (3.19)

Vn'(t)

Subsequently, each voltage, i.e. the voltage at node i is
expressed as a linear combination of wavelets resulting from the
expansion of the voltage into the wavelet space, i.e.

vi(x) = E‘Jauw 1 (%) (3.20)

By substituting equation 3.20 into equation 3.19, the vector of
voltages at all nodes of the system is expressed with:

v(x) = Uw(x) (3.21)
where ‘
a.n 3'12 a1?M w(x)
U= and w(x) = wz:(x)
By 8 v 8 m W (%)

Note that n is the total number of nodes in a system, M is the
total number of wavelet levels and w(x) are the family of
Daubechies' wavelets [3].

Next consider a device k which is part of the system. In general,
the input/output relationship for a device k (or the current-voltage
relationship) is:

ik 0 = A V(X) + By V(X) + Crype [ V(A)dA (3.22)
where

m is the node number,

k is the device number, and
A Bawo and C, are appropriate constant matrices

Upon substitution of equation 3.21 into equation 3.22, we have
i) = A i UW (%) + B UW(x) + C , Uf w(A)dA (3.23)
By using the second order finite difference approximation and

the trapezoidal numerical integration method, equation 3.23 can
be approximated as

i) 2 S GmgUIW;(X) (3.24)
]

Kirchoff's Current Law at node m yields

%imk (X) =0
Thus,

%%9,"@ Uw;(x)=0 (3.25)
Since equation 3.25 needs to be valid for all x, then

ji=12..2% (3.26)

%gmkj(u) =0,




.

Note that above procedure yields n x 2" equations. Solution of
these equations yields the unknown coefficients ay, i=1,2,..,0n,
j=1,2, ..., 2™ The actual voltage at a node i is computed now

from equation 3.20.

Examples of transient analysis using WBTA will be ilustrated in
the next section. The accuracy of this approach is computed by
comparing the wavelet based solution to the time domain
solution from a time domain network solver. '

4.0 Study Casesv of Transient Analysis

Examples 4.1 to 4.4 investigate solutions obtained using the
equivalent wavelet models for the basic circuit elements. The
problem statements are: Assume the initial voltage at each node
is zero. Then, at time t = 0, a lightning strike occurs at node 1

which is modeled by a current source i(t) = ip(e ™" - e
where o, = 0.06 x 10° sec'1, o, = 1.2 x 10° sec-1, and i, = 1.0 KA.
Compute the voltage waveform at each node over a duration T =
12.8 psec using WBTA with the total number of M, M-1, M-2, and
M-3 wavelet levels where M = 7. Then the same problem will be
solved using a numerical time domain analysis. The two
solutions will be compared.

Example 4.1: Consider a simple system consisting of a resistor
R = 50 Q and a capacitor C = 0.001 pF as shown in Figure 4.1.

Example 4.2: Consider a simple system consisting of a resistor
R = 40 Q and an inductor L = 100 pH as shown in Figure 4.2.

Example 4.3: Consider a simple system consisting of a resistor
R =50 Q, a capacitor C = 0.001 pF, and an inductor L = 100 pH

as shown in Figure 4.3.

Example 4.4: Consider a simple system consisting of resistors,
inductors and capacitors where Rq = 30 Q, Rp =40 Q, R3 = 20
0, R4 =50Q, L1 =100 pH, Lp =90 pH , and Cq = C2 = 0.001
1F as shown in Figure 4.4.

Figures 4.5, 4.6 and 4.7 show the voitage waveform at node 1
using Wavelet Based Transient Analysis (WBTA) for the total
number of 7, 6, 5, and 4 wavelet levels of the system from Figure
4.1 to 4.3, respectively. The numerical time domain analysis
solution is also plotted for comparison. Tables 4.1, 4.2 and 4.3
show the comparison of the solution found using WBTA as
compared to a Numerical Time Domain Analysis (NTDA).

Figure 4.8, 4.9, 4.10, and 4.11 show the voltage waveform at
each node of the system in Figure 4.4 using Wavelet Based
transient Analysis (WBTA) for the total number of 7, 6, 5, and 4
wavelet levels. The numerical time domain analysis solution is
also plotted for comparison. Table 4.4 shows the comparison of
the solution found using WBTA as compared to a Numerical
Time Domain Analysis (NTDA).
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Figure 4.1 A Resistor and Capacitor Circuit.

4 1.0
¥

®
ko3

Figure 4.2 A Resistor and Inductor Circuit.

éi.(o
¥

ZR

@
L C §L

AN

77T
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Figure 4.5 Voltage Waveforms at Node 1 for WBTA and
NTDA in Figure 4.1.
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Flgure 4.6 Voltage Waveforms at Node 1 for WBTA and
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Figure 4.7 Voltage Waveforms at Node 1 for WBTA and
NTDA in Figure 4.3.
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Figure 4.8 Voltage Waveforms for WBTA Using 7 Wavelet
Levels and NTDA in Figure 4.4.
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Figure 4.10 Voltage Waveforms for WBTA Using 5 Wavelet
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Figure 4.11 Voltage Waveforms for WBTA Using 4 Wavelet
Levels and NTDA in Figure 4.4.

Table 4.1 Comparison of WBTA Result to NTDA.

Total Number of R.M.S. Error Max. Abs. Error
Wavelet Levels Used (p.u.) (p.u.)
7 0.0056 0.0635
6 0.0090 0.0998
5 0.0399 0.3388
4 0.0784 0.5764

Table 4.2 Comparison of WBTA Resuit to NTDA.

Total Number of R.M.S. Error Max. Abs. Error
Wavelet Levels Used (p.u.) (p.u.)
7 0.0138 0.0351
6 0.0208 0.1350
5 0.0575 0.4961
4 0.0795 0.6205

Table 4.3 Comparison of WBTA Result to NTDA.

Total Number of R.M.S. Error Max. Abs. Error
Wavelet Levels Used (p.u.) (p.u.)
7 0.0293 0.0164
6 0.0231 0.1507
5 0.0599 0.4359
4 0.0991 0.6275
Table 4.4 Comparison of WBTA Result to NTDA.
Voltage at Voltage at Voltage at
Node 1 Node 2 Node 3
Total RM.S ]| Max. | RM.S| Max. | RM.S| Max.
Number off Error | Abs. | Error | Abs. | Error | Abs.
Wavelet | (p.u.) { Error | (p.u.) | Error (p.u.) | Error
Levels (p.u.) (p.u.) (p.u.)
7 0.0069 |0.0442| 0.0260] 0.15690.0177| 0.1154
6 0.0001 {0.0824] 0.0213] 0.13150.0132| 0.0756
5 0.0481 [0.3834] 0.0561 | 0.4136 | 0.0469| 0.3757
4 0.0789]0.6179| 0.0889] 0.57490.0737] 0.5245

5.0 Summary and Conclusions

The results of the wavelet based and a numerical time domain
analysis appear to be slightly different. The resuiting differences
are caused by the numerical approximation of integral and
differential of Daubechies wavelet functions. The computation
speed of using the proposed method appears to be faster than
using a numerical time domain analysis. '
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Abstract - In recent research, it has been shown that a physical-
variable voltage-behind-reactance form of the synchronous
machine model can be derived which is more numerically efficient
than existing physical-variable models. In this research, a new
voltage-behind-reactance model is derived which incorporates the
effects of magnetic saturation. This model is shown to have the
same numerical advantages of the umsaturated model, and is
readily implemented in either circuit-based or differential-equation
based simulation languages. An example system is provided which
demonstrates the accuracy and efficiency of this model over a wide-
range in operating conditions.

L. INTRODUCTION

In [1], a new synchronous machine model is presented
which is shown to have significant advantages relative to exist-
ing models. It is readily implemented in either circuit-based lan-
guages or in differential-equation-based languages using the
state model generation algorithm in [2]. This model is based
upon standard representations and no approximations are made
in its derivation. However, the numerical implementation is sig-
nificantly more efficient than existing physical-variable models.
In the example system studied, the given model gives rise to a
1700% increase in simulation speed with no discernible loss in
accuracy.

In this paper, a new voltage-behind-reactance model is
derived in which the effects of magnetic saturation are included.
This model is based upon the technique of representing the
derivative of the flux linkage versus current curve as an arctan-
gent function described in [3]. It is readily implemented in cir-
cuit-based languages or in differential-equation based languages
using the state model generation algorithm. Although it is sub-
stantially more accurate than existing physical-variable models;
its implementation is no less computationally efficient. An
example system is provided which demonstrates the accuracy
and numerical efficiency of this model.

Il. VOLTAGE BEHIND REACTANCE REPRESENTATION
The dynamic equations of the synchronous machine are
often expressed in the rotor frame of reference as [5]
r

Vgs = rsi;s + mr}";s +p)“;s )
v;s = rsids_c‘)r}“qs p)";s 2
Vos = Tsos +plos 3)
v, = ri;+ph;j = kql...kgh, kdl...kdN, fd @)
where
r r r
qu = Llslqs +7\'mq (%)
Mas = Lidas* Mng ©)

Q)

A = Lyi ¥ = kl...kqM
A, = L,jij+xmd kd\...kdN, fd ®)
and
M
r T .
Amg = LMq(’qs+ 2 ’kqi) ®
j-1
N
r T, . L,
Amd = Lmd('ds+'fd+ > ’kd]) (10)
j=1

Here, it is assumed the rotor contains M amortissur windings in
the g -axis, in addition to N amortissuer and one field winding
in the d -axis.

In order to optimize the efficiency of machine-converter
simulations, a new synchronous machine model was recently

set forth in {1]. In this model, the stator voltage equations are
expressed in terms of physical variables as

Vabes = rs”(er)iabcs + Labcs(er)piabcs + D
[PLabcs(er)]iabcs * etlzybcs
The resistance and inductance matrices are given by
r<(26,) rM(ZG ——) M(ze +2")
Fanes®) = |ry {20, - ) r20,-%F)  r\(20)) (12)
27 4z
LrM(zer+ Z) r2e) ro(20,+%F )
where
re(-) = rgtr,—rycos() 13)
ra
ry() = —-2——rbcos(-) (14)
ratry 2
ra = —3—‘1 - grs (15)
ry—-r
ry = L (16)
0 M r .
ry = ryt Loy (Z 4 J an
J= lleq1
2
r‘;'=r+—L"'d LY ;( ) (18)
Llfd lledj




LM(ze, - 2-3—") LM(29,+ 2?")1

L(26,)
IL;},CS(G,) = |td20,-Z) 120,-%)  Lu20) (19)
2n 4n
LLM(ZG',-P?) L,(26,) LS(2O,+-?)—
Iwhere
Lg() = Ly+L,—Lycos(’) (20)
1 L
L) = —E-—Lbcos(-) (21)
Lll +LII
L, = = @
L"d_Lu
b= _’.”3_"’.‘1 (23)
and the back emf is expressed
ell
v -1 9
€abes [K:] e’ 24
d
0
where
“ " M L;;Iquql
ey = ohg+| Y TR, Ky @5)
=1 Lirg
. N Lu
e"i' = _(Drxq_*_ Z md kdj()\. _)‘kdj)-*- (26)
i=1 Lig
v _mii,*_Lmdrzd()\' )
fdy, 2 d— fd
fd Ly

Here it is assumed that all rotor quantities are referred to the
stator using the appropriate turns ratio. Double primes represent
the subtransient quantities of the machine.

The stator voltage equations given by (11), along with the
rotor voltage equations

r.
pr; = —L—;j(xj—xmq)wj j = kql,...kqM @7
r‘ .
A, = _E'I-_(xj-xmd)wj-,, = fd, kd1, ...kdN (28)
1]
where A and X, are given by
Ang = mq(';ﬁ Z g ) 29)
A
Ama = L L:+L+ —”") (30)
Ly iz Lirgy

define the so-called voltage-behind-reactance (VBR) model of
the synchronous machine. It is important to note that no approxi-
mations were made in its derivation. Neglecting numerical error,
the solution of the corresponding equations should yield the same
time-domain responsc as the coupled-circuit model upon which it

‘machine [7]-[9].

is based. Moreover, no assumptions have been made in regard to
the stator winding configuration. The windings may be connected
in wye, delta, or the individual windings may be supplied to iso-
lated converter circuits. With only minor modification, the model
may be extended to include machines with an arbitrary number of
stator phases.

When implementing the VBR model, only the stator
branches and nodes are included when defining the circuit topol-
ogy. The rotor voltage equations are expressed explicitly in state
model form with rotor flux linkages as state variables. The sub-
transient voltages represent outputs of the rotor model and are
incorporated in the stator circuit as dependent sources. The stator
branch currents are transformed into the rotor reference frame
and represent inputs to the rotor state model. A circuit/block dia-
gram of the VBR model is given in Fig. 2 In [1], it was shown
that the VBR model is significantly more efficient than standard
circuit-based models. For the example system, a 1700% increase
in simulation speed was documented. The increased efficiency
results from the fact that the rotor equations are not expressed in a
coupled-circuit form. Therefore, the size of the matrices used in
circuit-based approaches (both differential-equation based and
discrete-circuit based) is significantly reduced and the eigenstruc-
ture of the resulting system is more numerically stable [1].
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bs q
T o @) Les®
e; e: €os )
. Rotor l’s - lgs
Yrd State —~— 2 . P
—_— Model , KS - bs
(15)-(16) | _ igs i,
an-a8) | et

Fig. 1 Voltage-behind-reactance machine mode (saturation neglected)l.

IIL. INCORPORATING MAGNETIC SATURATION IN THE Q-D REF-
ERENCE FRAME

Several techniques exist for incorporating magnetic satura-
tion in the q-d synchronous machine model. Traditional
approaches [6] have used iterative techniques or polynomial
approximations to include the effects of saturation. More
recently, magnetic circuits have been derived and duality used to
form equivalent electrical representations of saturated parts of the
These models have been shown to provide
accurate representations of magnetic saturation; however, obtain-
ing the necessary parameters often requires finite element analy-
sis or magnetic search coils to be mounted in the machine. A new
method of incorporating saturation in the q-d model of the syn-
chronous machine was described in [3]. Therein, an arctangent
function is used to approximate the derivative of the magnetizing
current versus flux linkage curve. From this, an explicit function
is derived relating the magnetizing current to the magnetizing
flux linkage in either axis of the machine. The advantage of this




ethod is that i) the current versus flux curve is approximated

ver a large operating region ii) it is non-iterative iii) saturation is
represented using only four parameters, all having physical sig-

ificance iv) no noise in estimating derivatives. It is useful to
rovide a brief description of this method before deriving the
hysical variable models.

In [3], the magnetizing current i, ; is expressed as a function
of the magnetizing flux linkage,

i d ) = F(Ap ) (31)

In order to derive the function, a plot of the d-axis magnetiz-
ing current versus flux linkage curve of a 3.7 kW machine is
shown in Fig. 2 [3]. The slope of this curve is constant in the
unsaturated region, undergoes a transition, and finally is constant
in the highly-saturated region. Thus, as described in [3], it is rea-
sonable to expect the slope of this curve may be approximated by
an arctangent function of the form

OF (M) _
I —md Mdatan(TT(xm AN +M,
oAy

where M ; and M, are related to the initial and final slopes of the

(32)

saturation function by

M,-M,
l My = L 33)
M+M,
M, = %—‘ (34)

and v, and A; define the tightness of the transition from initial

slope to final slope and the point of tramsition, respectively.
I Integrating (32) subject to the condition that zero magnetizing
flux yields zero magnetizing current, the function F(,, ;) may

be expressed

FOO )= 2Md r

My
I +——[1n(1+1T ) 1n(1+tT(xmd—xT) Y +M

35

A similar function may be derived if saturation is assumed in

the g-axis. As shown in Fig. 2, (35) provides an excellent fit to

the experimentally measured curve. The parameters used to

model the saturation of this machine are listed in Table 1 . A

I method for incorporating this function (nonliterary) in the g-d
model of the synchronous machine is described in [3].

IV. VOLTAGE BEHIND REACTANCE REPRESENTATION WITH
MAGNETIC SATURATION INCLUDED

In the VBR model described in Section II, the stator and
rotor systems are effectively partitioned. The rotor circuits are
expressed in state-model form, while the stator circuits are
expressed in a circuit-based form. This results from the fact that
in the unsaturated model, the magnetizing flux linkages can be
separated into stator and rotor components. For example, the d-
axis magnetizing flux linkage may be expressed

Fig, 2 Measured and fitted d-axis magneﬁzing current versus magnetizing flux

> lkd,)

(36)
w2 Likay

)"lrnd = Lmd(igs) +Lmd(L
A linear partitioning cannot be applied to the saturated model
because the magnetizing flux linkages are no longer linear func-
tions of the stator and rotor currents (or flux linkages). In order to
express the stator voltage equations in a voltage-behind-reactance
form, a new partitioning must be derived in which the nonlinear-
ity of the magnetizing flux linkages is portrayed in both the stator
and rotor equations.

This can be achieved by first expressing the d-axis magnetiz-
ing current as the fitted function of the magnetizing flux linkage
((31)- (35)). From this, the derivative of the magnetizing current
may be expressed in terms of the derivative of the magnetlzmg
flux linkage as

N
oF d(k )
.r md\"md — . .
Pipg=————P pAl g = Pigg +ptfd+ Zp'kdj (37
0 md j=1

In this research, a salient-pole machine is considered and thus
magnetic saturation is included in only the d-axis. Experimental
results verify this assumption. A parallel approach can be used in
modeling round rotor machines. Therefore, the derivative of the
g-axis magnetizing current may be expressed

. 1 . .
Pl = TP = Pl Py )
mq -
Jj=1
Taking the derivative of the rotor flux linkages and substitut-
ing for the derivatives of the rotor currents, (37) and (38) may be

rewritten as

M by _ lr
Lpar =i+ p(—ﬂ——qk z } 39)
L mq qs L., .
mq j=1 lkqj
BF (M., )

N
A A
: d” kd,
T Phma = Pl +P( o } ZP(-—I{—-—)
(40)

bringing the derivatives of the magnetizing flux linkages to one




I side yields

P = Lmq[ptqs ( )] @
I j=1 .
" il x
Phma = Lmﬂ;d)[zﬂss *tp ) Z (P ] (42)
-1 lkdyf
I where
: . . M { -1
| Lo=|—+Y — 43)
I " [Lmq z‘ leqi]
' -1
‘ " FA ) 1 e 1
¢ r = md [, —
l Lndma) |: Y. +L1d+ Zled' “4)
md ifd oy Ik
Substituting (41) and (42) into (1) and (2), the stator voltage
I equations may be rewritten as

r

I Vqs = l‘sl

r r
to (Lls’ds+lmd)+l’ qs+LmqZ le (45)
j=1

I v;s = rsi;s—mr(Llsi’q's+xmq)+L'a;(k;nd)pi;s (46)
N

Phry ph dj

+Ld(lmd 4 L0, Z £

l Ly j= Likay

where

L,=Ly+L,, @47)
l Ly = Lig+ Ly ) (43)

Expressions for the derivatives of the rotor flux linkages are
l obtained by manipulating the rotor flux-linkage equations (7)-(8).
Using

c_ 1 =
l i = L—lj(kj—-kmq), j = kql, .. kqM 49
i, = Ll(l,-—lm D5 J = fd kdl, ...kdN (50)
Iy :

for the rotor currents and substituting the resulting expressions
into (45) and (46) yields, after algebraic manipulation, an exact
voltage-behind-reactanoe form of the stator voltage equations

I v;s +mrL1slds+L +eq 61)
,

These equations may be transformed to physical variables by
applying the inverse of Park’s transformation to (3), (45) and

‘ I Vgs T T i;"s_mrl’lsi;s+L:z"(}‘md)pids+ed (52
eg=© md+(z Zmqkg] Mg x,au)) (53)
Jj=1 qu/
| I L“ r
d"kdj
€4 = 0yt O T (A=) + e
‘ I j=1 ledj
? d'fd
; Vs d b f(x =)
| l Ifd L,fd

(46), which yields,

. r .
Vabes = Fslabes ‘+ Labcs(er’ kmd)plabcs (55)

0 T o\\:
+ mr_a—e-(Labcs(er’ )‘md))'abcs + €abes
r

where r, is a diagonal matrix of the stator winding resistances

and

= [K]]

Cabes (56)

0

The inductance matrix is given by

[ Ly(26,) LM(29 ——) LM(ze +2")

Lobes®ptmd = [1,(20,- %) 14(20,-%F)  Ly20) |67
2n 47
f,M(ze,+_j.) L,/28,) L5(26,+? )
where
Lg(*) = L+ Ly(hr ) —Ly(Ar, g)c0s () (58)
L)
L) = ——“—Zm—d-zb(x;d)cos(-) (59)
L +L A\ )
LS D)= _ﬂq__;ffi._d. (60)
L' (A )-L.
Lb(x:nd) = md( md) mq 61)
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The stator voltage equations given by (55), along with the
magnetizing flux linkage equations (41) and (42), and rotor volt-
age equations

Y.
Pk, = —L =Ry )+ V5 ) = kql, . kgM —1 62)
L7
= L2 Jj= d
ph; = —Llj(xj— md) ;3 ) = fd kdl, . kdN-1 (63)

define the so-called voltage—behind-reﬁctance saturation (VBRS)
mode] of the synchronous machine. It is important to note that the
magnetizing flux linkages replace one of the rotor flux linkages
as state variables in each axis. In this derivation no assumptions
have been made in regard to the stator winding configuration.
The windings may be connected in wye, delta, or the individual
windings may be supplied to isolated converter circuits. With
only minor modification, the model may be extended to include

" machines with an arbitrary number of stator phases.

The VBRS model is compatible with both circuit-based or
differential-equation based programming languages. The imple-
mentation is similar to the VBR model in that only the stator
branches and nodes are included when defining the circuit topol-
ogy. The derivatives of the g- and d-axis magnetizing flux link-
ages, the M—1 g-axis and N-1 d-axis amortissuer rotor
voltage equations, and the field voltage equation, are expressed
explicitly in state model form with magnetizing and rotor flux




Inkages &s state variables. The magnetizing and rotor flux link- In the first computer study, it is assumed that the system is
ges represent outputs of the airgap-rotor model and are incorpo- initially operating in the steady state with a base load resistance
ratéd in the stator circuit as dependent voltage sources. The stator  of 66.11 Q connected to the dc output terminals. A second load
ranch currents and their derivatives are transformed into the
tor reference frame and represent inputs to the airgap-rotor state
model. A circuit/block diagram of the VBRS model is given in

resistance of 57.9 Q is then connected in parallel with the origi-
nal load. The machine is operated at a fixed electrical speed of
377 rad/sec with a constant field voltage of 0.6896 V as the

ilg- > switch is closed. The VBR and VBRS models were implemented
in ACSL [4] using the state model generation algotithm
e v r, Lasas®p M) described in [2]. The simulated response of both the VBR and
as < ) A M~ e VBRS model is shown along with the experimentally measured
I response in Fig.5. As shown, the measured and simulated
[Kr]—l P | r Lysps(8, Arrd) responses are in excellent agreement. In this system, the field cur-
s bs . N n rent is low, and thus the unsaturated and saturated models yield
I the same response. In calculating the responses depicted in
Fig. 5, Gear’s algorithm was used with a maximum and minimum

4 ' Ts Lcscs(eﬂ )":nd) . & & -4 -7 )
. A . A e 1l time step of 1x 107 and 1x 107" sec, respectively. The local
l e 4 . . truncation error, which is used to determine the actual time step,
irgap e igs  das, pigg p ' :
V'd aﬁxﬁotor - o was set to 1 x 107 for all state variables. When a change in
l LR I\S/Itg(tiil il bl K, | b Plhs topology (change in diode conduction state) is sensed, the time
(43)-(44) i B i, Pl step is reduced and the preceding calculation is repeated so as to
(65)-(66) = limit the uncertainty in switching time to less than the minimum

time step. Following each topological change, the time step is set

to its minimum value and the integration algorithm is reset. Sub-

sequent time steps are adjusted in accordance with Gear’s criteria

V. SATURATION MODEL VERIFICATION [12]. The CPU time needed to calculate the VBRS and VBR

I In order to illustrate the accuracy of the VBRS model, an  reqponses on a 200 Mhz Pentium-based PC were 12.29 and 12.55
experimental system consisting of a 3.7 kW synchronous e respectively.

machine connected to a line-commutated converter was simu- In the second computer study, the machine is operated with a
llatxf:};rl:nzizli:aggng; ai:;g;i?gzefmizgi lztf;iéﬁ 'tl.;l;e constant field voltage of 2.84 V as the switch is closed. In this
sy P ’ y experiment, the field resistance drifted slightly from the previous

quency response testing, as well as the saturation model parame- ] . _ .
ters, are summarized in Table 1. . experiment to 0.135 . The load resistance changed slightly to val-

1o &

Synchronous
Machine

I Fig. 3 Voltage-behind-reactance machine model (saturation included).

ues of 67.03 and 57.9 Q respectively. The simulated response
of the VBRS model is shown along with the experimentally mea-
sured response in Fig. 6. The response of the VBR model in
which saturation was not represented is again included. As
shown, the measured and the simulated VBRS responses are in
excellent agreement. However, the response predicted by the
VBR model is significantly less accurate. In this system, the field
current is much larger than in the previous study, and thus the
machine is operating in a saturated region. This is particularly
evident in the responses of the rectifier output voltage and the
field current. The CPU time needed to calculate the VBRS and
13.5 mH VBR responses were 12.40 and 12.59 sec., respectively. From
this it is seen that the VBRS model is more accurate and is as
numerically efficient as the VBR model.

idc

Fig. 4 Step Load Test Configuration

ro=382mQ |, =083mH |L

i

mq
Feqr = 4047 Q |Lyy = 473 mH |1, = 3180Q

Feqy = 131 KQ. |Lyzy = 368 mH |1, = 0923 Q

VI. SUMMARY

ryg = 122 mQ Ly = 2.54 mH Ni = 0.0269 A new physical-variable voltage-behind-reactance model of
rd the synchronous machine is derived in which the effects of mag-

L,=3927TmH L, = 613mH |L, , = 3.4mH netic saturation are included. This models is flexible with regard
d q to the stator winding configuration, and is compatible with cir-

M, = 140 M, =120 4 Poles cuit-based  and  differential-equation-based  simulation

approaches. Experimental results are included in which the accu-
racy of the model is demonstrated over a wide range of operating
conditions.

Ap = 05 T = 29

Table 1: Synchronous machine parameters.
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. A Fast and Efficient Multi-Rate Technique For Detailed Simulation of AC/DC
Power Systems :
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Abstract - A technique to perform multj-rate simulations of AC/DC
power systems is presented which is readily implemented in either
circuit-based or differential-equation-based simulation languages.
In this method, the partitioning of the system is accomplished using
an exact voltage-behind-reactance model of the synchronous
machine. It is therefore easy to implement and does not require
eigensystem partitioning algorithms. The partitioned system is
integrated separately, and thus any fixed-step or variable-step
integration algorithm can be used to solve the fast and slow systems
respectively. An example synchronous machine-converter system is
provided which demonstrates a 350% increase in simulation speed
over the most efficient single-rate simulations with little observable
loss in accuracy.

I. INTRODUCTION

It is well known that an inherent stiffness exists in the
dynamics of most power systems. The stiffness results from the
differences in the dynamics of the stator network, the rotor cir-
cuits, and the rotor mechanical system. The techniques used to
efficiently solve these systems have traditionally fallen into one
of two general categories. In the first category, stiffly-stable
variable-step numerical integration algorithms, such as Gear’s
[1] are used. Although there are several strict definitions used to
characterize an algorithm as stiffly-stable, the main property is
the ability to vary the integration step size over a wide range of
values while maintaining numerical stability., Stiffly-stable
algorithms are often applied to the simulation of power systems.
Although  effective, their efficiency can be significantly
reduceds when simulating AC/DC power systems which
include switching circuits (converters, inverters). In these sys-
tems, switching results in a change in topology of the stator-net-
work and possible discontinuities in the state variables.  If
variable-step integration algorithms are used, the time step is
reduced to its minimum value and the integration algorithm is
reset each time a change in topology occurs. In addition,
because several of the states associated with the fast dynamics
contain switching transients, the fast dynamics may continue to
be dominant over the entire course of integration and therefore
the maximum integration time-step that can be used to solve the
system is limited.

In the second category, time-scale separation techniques are
applied. Therein, the system is decoupled into states with fast
and slow dynamics respectively. Once partitioned, different
methods can be used to solve the resulting equations. One such
method that has been used is multi-rate integration [2]-[5]
wherein different time steps are used to solve the fast and slow
systems, respectively. These methods have been applied to sim-
ulations of power systems with successful results [4]-[5].
Although effective, their use has been limited by the fact that
multi-rate integration algorithms are not included in most com-
mercially available simulation packages, such as Spice [6],
Saber [7] , EMTP [8], etc. Therefore, the system analyst, must

H. J. Hegner, Member
Naval Surface Warfare Center
Annapolis, Maryland

establish and program these algorithms.

In this paper, a technique to perform multi-rate simulations’
of switched power networks is described. The partitioning of
the system is based upon the exact voltage-behind-reactance
model of the synchronous machine derived in [10]. Applying
this method, any standard fixed- or variable-step integration
algorithm can be used to solve the fast or slow systems respec-
tively. Therefore, it is compatible with existing commercial
dynamic simulation software (both circuit-based or differential-
equation based), and does not require any integration algorithm
programming by the system analyst. An example synchronous
machine-converter system is provided which demonstrates a
350% increase in simulation speed over the most efficient sin-
gle-rate simulations with little observable loss in accuracy.

II. MULTI-RATE SIMULATION
The solution of power system dynamic equations is typi-
cally accomplished using numerical integration. The numerical
integration of a system of differential equations
px = f(x,1) ey
is achieved using either explicit (Runge-Kutta, Forward-Euler,
Taylor) or implicit algorithms (Adams Moulton, Gear’s, Back-
ward-Euler). If explicit algorithms are used, (1) is discretized
into a form

e

xn-i- 1= X, +h z aif(xlzfi)
i=0
where the values of the g; ‘s are dependent upon the chosen

2

algorithm, If implicit algorithms are used, (1) is discretized into
aform

e

Xpp1 = Xy +h 2 af(x,_;) 3)

i=-1

The term implicit refers to the presence of x,,, ; on both sides

n+
of the equal sign in (3). Both explicit and implicit algorithms can
have fixed time-steps, or the time-step may be allowed to
change (variable-step) throughout the integration. The stability
properties of these algorithms vary; however; stiffly-stable algo-
rithms, such as Gear’s, are always implicit. Thus, although the
time-step can be increased by orders of magnitude through a
simulation, the solution of the implicit equations can be compu-
tationally intensive for large systems. Furthermore, when simu-
lating systems which include switiching circuits, (Fig. 1),
switching results in a change in topology of the stator-network
and possible discontinuities in the state variables. If variable-
step integration algorithms are used, the time step is reduced to
its minimum value and the integration algorithm is reset each
time a change in topology occurs. In addition, because several
of the states associated with the fast dynamics contain switching




transients, the fast dynamics may continue to be dominant over
the entire course of integration and therefore the maximum inte-
gration time-step that can be used to solve the system is limited.

An alternative technique that has been applied to efficiently
solve stiff systems is multi-rate integration. Therein, a system of
differential equations

px = f(x,7) ©)
is expressed in decoupled form as

X f(x,x,t
px = |79 = |0 ©

px, fs(xf, X 1)
where X, and X are vectors containing the states with fast and

slow dynamics respectively. The partitioning is most readily
accomplished if there is apriori knowledge of the system. How-
ever, transformations have been derived in which the model is
partitioned based upon the calculated eigenvalues of the linear-
ized model [2]-[3]. Once partitioned, different time steps are
used to solve the fast and slow systems, respectively. It is inter-
esting to consider the numerical problems that must be addressed
when solving a partitioned system using different time steps.
Although the problems are present regardless of the integration
algorithms used, it is convenient to assume that both the fast and
slow equations of the partitioned model in (5) are solved using a
second-order Runge-Kutta algorithms. Therein, the systems is
solved using discrete equations of the form.

Xena1) = Xpomy + %(kﬂ + kﬂ) 6)
h2
Xine1) = Xty T 3 (Kop +K5p) O
where
ke = % X5t pm)s L) ®
Ky = 0 + ik X (b +10), i+ hy) ©
ksl = fs(xf(ts(n))’ Xs(n)(ts(n))’ ts(n)) (10)
Ky = S0ty + o) Xy + g gy + ) (1)

Here /1, and h, represent the time steps of the fast and slow

systems, respectively. Since h, #h,, difficulties arise because

the time step of the slow system does not correspond to that of the
fast system. In order to advance the fast system to the next step,

ff must be evaluated at different points on the interval from Y(n)

to tf( However, because the slow states are integrated at a

n+1)°
different rate, their values may not be known at these points. The
same problem occurs when advancing the slow system to the next
step. ‘
Imbedded forms of various integration algorithms have been
derived in which these problems are addressed [2]-[5]. In the
imbedded Runge-Kutta scheme described in [2], a polynomial
approximation is used to determine the values of the slow states
needed to advance the fast system. The fast system is then inte-
grated to the points needed to advanced the slow system.
Although imbedded algorithms have been shown to be an
effective means of applying multi-rate techniques, most commer-
cially available simulation software does not contain provisions
to apply these methods. Imbedded algorithms must be estab-

lished by the system analyst. Furthermore, the flexibility of using
imbedded schemes is limited since the same integration algorithm
is used to solve the fast and slow dynamics of the system.

Additional problems are encountered when attempting to
apply standard multi-rate techniques in circuit-based or differen-
tial-equation based languages in which algorithmic state model
generation is used. In circuit-based languages the differential
equations are discretized at the branch level providing an alge-
braic equation relating branch voltages and currents at any given
instant of time to their past values. A state model is never formed;
inductors and capacitors are replaced by discrete-circuit equiva-
lent models which are functions of the specific integration algo-
rithm that is chosen. Therefore, partitioning the system
algorithmically would involve separating the system based upon
the values of the inductances and capacitances in the circuit. If
imbedded algorithms are applied, the inductive or capacitive
branches would be at a different instants in time, making it diffi-
cult to solve for the branch currents and voltages of the entire sys-
tem. In differential-equation based languages in which the
algorithmic state model generation is applied, the eigenvalues of
the system can be calculated. However, in machine-converter
circuits the eigenvalues are functions of rotor position and the
switching of the converter. An algorithmic method of partition-
ing the system can be developed; however, the partitioning rou-
tine must be applied at each time step in the integration
algorithm. Therefore, there is significant overhead in both calcu-
lating and partitioning the eigensystem at each time step.

III. PHYSICAL-VARIABLE VOLTAGE-BEHIND-REACTANCE MODEL
OF SYNCHRONOUS MACHINE-CONVERTER SYSTEMS
To optimize the efficiency of machine-converter simula-
tions, a new synchronous machine model was recently set forth
in [10]. In this model, the stator voltage equations are expressed
in terms of physical variables as

Vabes = Ts (er)labcs +p[Labcs(er)labcs] *+€abes (12)
where the resistance matrix is given by

rg(26,) rM(ZOr—%E) rM(26,+ 2?“:)
Fpes()) = rM(ze,— %”) rs(ze,_ 4?”) 14(26,) (13)

rM(ze, + 2—37-5) ry(20,) 'rs(ze, +4?7c )

with
re(*) = ro+r,—rycos(-) (14)
ra
ry() = —E—rbcos(-) (15)
ri+r) 2
r, = —g—i-grs (16)
r‘;'—ru.
r, = 454 (7
and
" "2 Tkgj '
re= 4L, ZLZ— . (18)
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Fig. 1 Voltage-behind-reactance machine model.
The inductance matrix is expressed as
2 2%
Lg(26,) LM(ZGr— —) LM(ZO + ?)
o 2 4
Lpes(8)) = LM(ZB,. - ?n) LS(ZBr_ _?‘E) L(26,) (20)
21 47
LM(29,+ ?) L,/(26,) LS(ZG B )
where
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L +L
d
L, = _73_'2_ (23)
Lu _L"‘
d
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In (13)-(23), L,,; and L
ing inductances of the machme, which are defined by

represent the subtransient magnetiz-

’” 1
Ly, = — 25)
1 1
—+
1 1
L,y = — (26)

The back emf on the stator windings is a function of the rotor flux
linkages which may be represented as

’

e

q
= [K{ i % @n

abcs

0

where
" ’” Lm k 44
el = o +| Y, O M) 28)
izt
e) = -0 +z—"’—"ﬂ(xd M) + (29)

j=1 1kdj
mdr fd (7w }" )
s dLlfd L2,
The stator voltage equations given by (6), along with the
rotor voltage equations

r,
px; = _ZLr(xj—xmq)wj;j = kql,...kgM (30)
pA; = —"—(x ~Myg) +V;3 ) = fd kdl,..kdN (D)

where A, q and A.m 4 are given by

4 " }\,
A =1L + —*qj (32)
mq mq qs leq]

i=1

}”md = Lmd lds Llfd+ Zled (33)

define the so-called voltage- behlnd reactance (VBR) model of
the synchronous machine. It is important to note that no approxi-
mations are made in its derivation. Moreover, no assumptions
have been made in regard to the stator winding configuration.
The windings may be connected in wye, delta, or the individual
windings may be supplied to isolated converter circuits. With
only minor modification, the model may be extended to include
machines with an arbitrary number of stator phases.

When implementing the VBR model, the stator branches
and nodes are included when defining the circuit topology. The
rotor voltage equations are expressed explicitly in state model
form with rotor flux linkages as state variables. The subtransient
voltages represent outputs of the rotor model and are incorporated
in the stator circuit as dependent voltage sources. A diagram of
this approach for an example machine-converter system is shown
in Fig. 1. 1In [10] it was shown that the VBR model is signifi-
cantly more efficient than standard circuit-based models. This is
due to the fact that the rotor equations are not expressed in a cou-
pled-circuit form. Rather, they are expressed in state model form
with flux linkages as state variables. Therefore the size of the
matrices used in circuit-based approaches (both differential-equa-
tion based and discrete-circuit based) is significantly reduced and
the eigenstructure of the resulting system has been shown to be
more numerically stable [10].




ns
————— . | - Vas +
T bl b3 %SbS
KT O NA—
- L b7 n2 bl0
A A e S
Y YN 0
sample/ :_ nl i 1y »n3
hold _e-cs—— - - Ves + | I .
n
e/ f eu? W——m {-— i Q —$
S Ty r R e L el
lygs VT lqs — %5 __ _ 4
Yy J. <1 r iy |1
(2-23] 7 Jdt r | K | — s
——> lrs VTsi lds s ics !
‘ 0 -t - — — — — — — — —

Fig. 2 Multi-rate integration of synchronous ma-
chine/power systems.

IV. MULTI-RATE SIMULATION OF SWITCHED POWER NETWORKS
The VBR model described by (12), (30) and (31) as well
as several properties of switched networks provide a means to
apply a multi-rate integration method using standard integration
routines that is compatible with both circuit-based and differen-
tial- equation based languages. Additionally, different integra-
tion algorithms can be utilized to solve the partitioned system.
Using the VBR model described in Fig. 1, the stator-network
equations can be derived algorithmically while the rotor dynamic
equations are derived analytically. This not only provides an effi-
cient method of solving the system, it provides a convenient
means of separating the stator and rotor dynamic systems. In
most networks, the stator and rotor states are characterized by dif-
ferent time scales. The stator-network currents have small time
constants relative to the rotor flux linkages. Furthermore, the sta-
tor currents are characterized by discontinuities which result
from the converter switching. These discontinuities result in a
reduction in the time-step selected by most variable-step inte-
gration algorithms (Gear’s, Adams-Moulton, etc.). The rotor flux
linkages typically have larger time constants, and they do not
contain the discontinuities resulting from the converter switching.
The example synchronous machine connected to a line-com-
mutated converter shown in Fig. 1 provides a convenient exam-
ple that can be used to describe the implementation of a new
multi-rate integration approach. For simplicity, and without loss
in generality, it is assumed that a synchronous machine is con-
nected to an uncontrolled diode converter and the system operates
in conduction Mode . A typical converter output voltage wave-
form is shown in Fig. 2. The output voltage is periodic with a

period of T; = sec, where @, is the electrical angular

I
30,

velocity of the rotor. The period T'; is herein defined as the

switching interval. As shown in Fig. 2, T; consists of two sub-

intervals, labeled ¢ cond com*

the time in which only two valves of the converter (one in upper
and lower half respectively) are conducting. The interval ¢

and ¢ The interval ¢, , represents

com
represents the time in which the current is switched from one
diode to another in either the upper or lower part of the converter.
The length of time spent in either mode is dependent upon the

commutating inductance and the output current. However, for
constant rotor speed, the total switching interval remains fixed

T; is an interval that can be useful in facilitating multi-rate

integration approaches. In most systems, the rotor dynamics have
time constants that are much greater than T;. Therefore, the
p and e, which represent inputs to the
stator network equations and outputs of the rotor equations in the
partitioned state model, can assumed to be constant over a
switching interval, and in some cases multiple intervals. Because
of this, the fast system can be integrated over a switching interval
without the need to estimate the values of the slow states. After
the stator network equations are integrated over the interval using
any fixed- or variable-step integration algorithm, the values of the

subtransient voltages, e

- transformed stator currents are input to the rotor equations which

are then updated using a possibly different fixed-or variable-step
integration routine. It should be noted that the transformed cur-

s s . .
rents i, and iy, that represent inputs to the rotor equations con-

tain switching harmonics. In order to reduce the effects of the
switching transients on the rotor calculations, average values of
the currents can be used to advance the rotor states. A block dia-
gram of this technique is shown in Fig. 3. Here the assumption

I

that the rotor back emfs e p and e, remain constant over a

switching interval (or a fraction or multiple switching interval) is
represented as a sample and hold block. It will be shown in the
next section that there are machines in which the rotor dynamics
are as fast or faster than the stator dynamics. In these instances, it
can still be vseful to have the stator and rotor dynamics parti-
tioned, since the rotor flux linkages are smoother functions than
the stator-network currents. In these instances the rotor equations
are updated at a fraction of the switching interval, rather than
multiples of the switching interval.

There are several advantages of this method over standard
multi-rate approaches; namely (i) it is readily implemented with
standard integration routines (ii) it does not require algorithmic
partitioning of the state model (iii) it is fully compatible w1th
circuit-based or differential equation based languages.
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Fig. 3 Output voltage of a six pulse rectifier (Mode 1).

V. COMPUTER STUDY
In order to illustrate the advantages of the new multi-rate
technique, an experimental system consisting of a 3.7 kW syn-
chronous machine connected to a line-commutated converter was
simulated. A circuit diagram of this system is shown in Fig. 1.
The synchronous machine parameters, as determined by standstill
frequency response testing, are summarized in Table 1.

Table 1: Synchronous machine parameters.

ry = 382 mQ L, = 112mH L, = 24.9 mH
I'ygp = 140 Q Lizgr = 987 mH Thql = 507 Q
Neagp = 1L19kQ (L, ., = 491 mH kg2 = 1.06 Q
gz = 1.58 Q Lipgs = 452 mH Tkq3 = 447 mQ
Ns

Ta = 112 mQ Llfd = 1.53 mH @ = 0.0269
L,;=393mH Lipgi = 4.21 mH Ligz = 3.5 mH
leq3 = 26.2 mH 4 Poles

In the computer studies, it is assumed that the system is ini-
tially operating in the steady state with a base load resistance of
21 Q connected to the dc output terminals. A second load resis-

tance of 4.04 Q is then connected in parallel with the original
load. The simulation was implemented in ACSL [9] using the
state model generation algorithm to establish the state equations
of the stator-converter. The solution was calculated using five
methods. In each of the first four, multi-rate integration was not
applied; rather, the stator and rotor dynamic equations were
solved using a single integration routine. The particular algo-
rithm, the specified time step, and the cpu times necessary to cal-
culate the response are given in Table 2. The fifth solution was
calculated using the multi-rate technique described above. Calcu-
lating this response, the stator-network equations were solved
using a fixed-step Backward Euler algorithm. The rotor response
was solved using a variable-step Gear’s algorithm. The choice
of these algorithms is described below. The integration of the
stator-network equations can be included as part of any circuit-
based or differential-equation based automated state model gen-
eration algorithm. In this particular example, the stator-network
equations were solved within the automated state model genera-
tion algorithm by using the Backward-Euler discretized form of

the algorithmically derived state model described in [11]
. -1 .
pi,=-L_ "(r,+pL)i +Be, (34)

which can be expressed in a closed-form discrete equation

i(n+1) = 1+ (L], + L) [ (n)-kL B e, 135)
The solution of the state equations within the state-model genera-
tion algorithm can be useful when solving large-scale systems,
since the symmetry of the matrices L, and r, can be used to

reduce the computation required to solve the discretized system.

As stated previously, any fixed- or variable-step. algorithm
can be used to solve the stator-network or the rotor dynamic
equations. In most power systems, the stator-network will have a
much faster dynamic response than that of the rotor circuits.
However, in this particular system, there is a stiffness within the
rotor circuit dynamics. The stiffness results from the wide range
in values of the amortisseur winding resistances. Although a
modal partitioning of the rotor dynamic system could be per-
formed, and the fast rotor dynamics solved within the stator-net-
work block or in a separate integration block, Gear’s algorithm is
chosen. The inefficiencies of Gear’s algorithm in solving
switched power networks was described previously; however, it
is noted that the rotor circuits do not contain switching elements.
Therefore, Gear’s algorithm can be used to efficiently solve the
stiff rotor system.

In this system the stator-network dynamics are much less
stiff than the rotor dynamics, thus a fixed-step Backward-Euler
algorithm was chosen because it is computationally efficient
compared to higher order fixed-step algorithms and does not have
the inefficiencies of variable-step algorithms which result from
the switching of the converter.

Because the rotor circuits contain fast dynamics, it was
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assumed that the subtransient back emfs ¢ and e d that are out-

q
puts of the rotor block and inputs to the stator-network block
remain constant only over approximately a tenth of the switching
interval, Therefore, the multi-rate integration was achieved by
integrating the stator-network equations (using Backward-

Euler)at a fixed time step of 5 - 10—4 over an interval 0.1T;,

during which the rotor flux linkages were assumed constant. The

average of the transformed currents i; s and i;s over the interval
0.1T,; were then input to the rotor dynamic equations which

were integrated (using Gear’s) over 0.17;, and the cycle

repeated

Comparing the cpu times of the five simulation meth-
ods, it is seen that the multi-rate technique is over 350% faster
than fastest single-rate method (in this example Gear’s). There is
a significant difference in the simulation times of the single-rate
algorithms which results from the difference in the numerical
properties of the algorithms. Of the three, only Gear’s is stiffly-
stable [13]. The single-step Runge-Kutta and variable-step
Adam’s Moulton are less efficient because a smaller time-step
must be used to ensure numerical stability.  The significant
increase in the efficiency of the multi-rate method results from
the reduction of the numerical integration inefficiencies associ-
ated with converter switching. In the multi-rate integration
approach, Gear’s algorithm is used to solve only the rotor system.
Therefore, the time-step selected is not effected by the switching
of the converter. A plot of the time step selected by Gear’s algo-
rithm for both single-rate and the multi-rate simulations are




+ shown in Figs. 4-5.

The responses predicted using the single-rate and multi-rate
algorithms are shown in Figs. 6-7, respectively. From these plots
it is seen that the long-term dynamic response predicted by the
multi-rate algorithm is in excellent agreement with those of the
single-rate algorithms. Comparing the overall response, there are
slight differences in the switching dynamics, particularly in the
field current of the synchronous machine. These differences
result from the fact that the averaged stator currents are used as
inputs to the rotor dynamic equations. By using averaged cur-
rents, a portion of the switching harmonics are eliminated.

s

Table 2:
. . . CPU

Integration Algorithm Time-Step Time
Runge-Kutta-Fehlberg 1076 <h<1 08 135s
Adams-Moulton 1 0-7 <h<l O-4 47s
Gear’s 10_7<h<10—4 18s
Multi-rate -5 5s
Stator/network - Bckwd Euler h=3e10
Rotor - Gear 107 <h<10~

V1. SUMMARY

A new multi-rate integration technique for simulation of AC/
DC power systems has been derived. This technique is computa-
tionally more efficient than single-rate algorithms, can be imple-
mented in circuit-based or differential equation?based languages,
and uses standard integration algorithms.
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Abstract

Perfect output tracking, which requires inversion of the input-output dynamics, is not
always a practical control objective. Difficulties are encountered for systems with zeros
which are unstable, or stable but lightly damped. When the zeros are unacceptable in the
above sense, perfect output tracking would require the control to be either unbounded, or
bounded but highly oscillatory. In this paper, an approximate output tracking control design
method is introduced for pulse-width modulated (PWM) systems with unacceptable zeros.
The design method is applied to the nonlinear sampled-data model of the PWM system, and
is based on output redefinition. Although the new approach leads to approximate rather
than perfect output tracking, it guarantees bounded and non-oscillatory responses.

1 Introduction

Pulse-width modulated (PWM) systems are switch-controlled systems with dynamic models
that depend on the status of the switch. Sampled-data modeling techniques provide a natural
means to represent the behavior of such systems over each switching cycle. Sampled-data
models for switchmode power converters were first developed in [16] and later extended in [15]
and [19]. More recent related work appears in [9] and [6]. '
One of the motivations for modeling PWM systems is to design model-based PWM con-
trollers. Digital controller implementations rhay be designed using either a direct approach or
an indirect approa;ch. The direct design approach is based on the discrete-time sampled-data
model and thus explicitly accounts for the switching frequency, whereas the indirect design

*This work was supported in part by the National Science Foundation under grant ECS-9158037, by the
Office of Naval Research under grant N00014-96-1-0926, and by a graduate fellowship funded through King Saud
University of Riyadh, Saudi Arabia.

1 All correspondence should be addressed to this author.




approach is based on a continuous-time model which is typically derived using averaging ap-
proximations. Examples of both types of digital controllers exist in the literature; e.g. a direct
digital design is reported in [8] whereas an indirect digital design is discussed in [18]. ‘

This paper addresses the problem of digital control design for a class of PWM systems,
using large-signal sampled-data models. One possible design method is based on inversion of
the discrete-time input-output relation. Although such inverse control offers potentially high
performance, its implementation is problematic for two reasons.

First, the sampled-data model exhibits input nonlinearities, and hence iterative numerical
search must be used to determine the control input. This first issue has been addressed by
the authors in [1] for simple PWM systems and in [2] for more general PWM systems, using
piecewise-linear approximations of the nonlinearities. By solving for the inverse control using
piecewise-linear Newton iteration, accurate control is achieved with very low computation and
with moderate storage.

Second, difficulties are encountered when implementing inverse control for systems with
zeros which are unstable, or stable but lightly damped [12, 5, 10]. This second issue is the main
subject of the present paper; preliminary results are reported by the authors in [3]. When the
zeros are unacceptable in the above sense, perfect output tracking would require the control to
be either unbounded, or bounded but highly oscillatory. Clearly, in either case, inverse control
for perfect tracking is not a practical solution for systems with unacceptable zeros. .

In this paper, an approximate output tracking control design method is introduced for PWM
systems with unacceptable zeros. The design method is applied to the nonlinear sampled-data
model of the PWM system. The original system is approximated by one with acceptable zeros,
and the appfoximate system’s inverse control is applied to the original system. Although this
approach leads to approximate rather than perfect output tracking, it guarantees bounded
and non-oscillatory control signals. The approximation step involves redefinition of the system
output, in such a way as to eliminate all unacceptable zeros while leaving all acceptable zeros

in their original locations.

2 DModeling

This paper considers PWM systems of the form

. Az(t) + bu(t) , kT <t < kT +diT '
i) = { A;z(t) + b;u(t) , otherwise * (2.1)
y(t) = z(t) (2.2)

where £ € R™ is the state vector, y € R is a scalar output (e.g. the signal to be controlled),
u € Ris a scalar input (e.g. a voltage or current source), and ' denotes transpose. As indicated,
the circuit dynamics switch between two topologies, (A;,b;) and (Ag, b2), with switching period
T and duty ratio dx € [0, 1], where k represents the discrete-time index. The source input will
be assumed to be piecewise-constant, i.e. u(t) = ux for all kT <t < (k+1)T.
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Note that the model (2.1)-(2.2) implicitly assumes that the control processor and the PWM
switch operate at the same frequency. This assumption was made only to simplify the presen-
tation. It is possible to carry out all steps of the paper using instead a model which assumes
that the control input is updated every N switching periods, where N represents the integer
ratio of switching frequency to control frequency. The conflicting requirements of relatively
fast switching with relatively slow control computation could then be resolved by selecting an

appropriate N > 1. See [13] for details.

2.1 Sampled-Data Model

Using sampled-data modeling techniques {14, 15, 19}, it is easy to show that the discrete-time
evolution of the state zx := z(kT") and output yx := y(kT) is governed by

Tr4y1 = F(dk)zk+G(dk)uk (2.3)
ye = Czp (2.4)

where the input nonlinearities F(-) and G(-) are given by

F(d) P2((1 - d)T)2:1(dT) (2.5)
G(d) := ®((1—-d)T)I'(dT) +T2((1 - d)T) (2.6)

and where ®;(-) and I';(-) are defined by
t
O;(t) 1= et Tit) = / ATy, dr (2.7)
0 \

It is important to understand that the control input for this model is the duty ratio di, not
the source input u; which for many applications is constant. It is assumed that this nonlinear
model has well-defined relative degree r at (J,:i, @), i.e. 1 < r < n is the smallest integer such

that
3yk+r

S 70 (2.8)

for all points near (d, , @).

2.2 Zero Dynamics

The model (2.3)-(2.4) exactly reproduces the sample-to-sample trajectory of the system, as
no approximations have been made. Unfortunately, both the input nonlinearities and the zero
dynamics of this model can present difficulties in the control design process. The primary
concern in this paper is to account for the possibility of unacceptable zero dynamics. This
focus is well motivated since, due to the influence of sampling, sampled-data models possessing
unacceptable zero dynamics are frequently encountered in practice [4].

In determining whether the zero dynamics is acceptable or unacceptable, it suffices to con-
sider the eigenvalues of the zero dynamics’ linear approximation. These eigenvalues coincide




|

with the zeros of the transfer function associated with the linear approximation of (2.3)—(2.4).
Hence, the next modeling step is to evaluate the transfer function, in order to avoid the explicit
calculation of the nonlinear system’s normal form and zero dynamics. .

The equilibrium points of (2.3)~(2.4) are parameterized by constant duty ratio d € [0, 1]

- and constant source input % € R, i.e.

z = F(d)z+G(d)u (2.9)
= % ‘ ' (2.10)

<

Associated with any such equilibrium point is a small-signal model which describes the approx-
imately linear dynamics of the system in a neighborhood of the equilibrium point. Denoting

the deviations from equilibrium values by
Fi=2—% Gii=u—-% di=d-d fi=y—7 (2.11)

the corresponding small-signal linear approximate model is given by

Fxi1 = Fzp+ G+ Hdy : (2.12)
G = C'ix (2.13)
where
F := F(d) | (2.14)
G = G(d) _ (2.15)
H = Toy((1 - T)((A1 — A2)(@1(dT)z + Ty (dT)a) + (by — br)a) (2.16)

The transfer function from d to 7 is given by

Na(Z)Nu(z) i =1 7
DG d(zI-F)*H . (2.17)
where D(z) is the denominator polynomial, and the numerator polynomial N(2)Ny(2) has
been factored into acceptable and unacceptable components. Note that Ny(z) contains every
zero on or outside the unit circle, as well as stable but otherwise unacceptable zeros such as

those on the real axis near z = —1. The total number of unacceptable zeros is assumed to be
mi= deg{N.(2)}.

2.3 Output Redefinition

The objective is to find a nonlinear model which is a reasonably close approximation of (2.3)-
(2.4), yet which has zeros'given by Na(z) rather than by Ny(z)Ny(z). The approach taken
requires redefinition of the output, but involves no alteration of the state dynamics. Given
(2.17), it is clear that the zeros given by Ny(z) may be removed while, at the same time, the
magnitude and phase of the transfer function may be maintained at dc, by simply replacing
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'u(z) with Ny(1). Hence, this suggests that an approximate model possessing the desired
properties can be found by computing the unique vector ¢ such that

Na(z)Nyu(1)

e (2.18)

&zl —F)'H =
The approximate transfer function (2.18) exactly matches the true transfer function (2.17) at dc,
and hence the approximation error is guaranteed to be small for all sufficiently low frequencies.
The frequency range over which the approximation error is acceptable can be quantified by
enforcing the condition N, (e™“T) =~ Ny(1). '
Given &, a nonlinear model which approximates the original nonlinear model (2.3)~(2.4) is
defined by

Tyl = F(dk):l:k + G(dk)uk (2.19)
G = (-8 2+ (2.20)

Since (2.20) is derived on the basis of a local approximation, it may be desirable to schedule ¢ and
# such that they vary with the operating point. The equilibrium output 7 of the approximate
nonlinear model coincides with the equilibrium output 7 of the original nonlinear model. The

small-signal model associated with the approximate nonlinear model is simply
Tyl = F-':fk + éﬂk + g(ik ) (2.21)
G = i (2.22)

which indeed yields the desired approximate transfer function (2.18) rather than the true trans-
fer function (2.17).

Since there are m fewer zeros in (2.18) than in (2.17), the approximate nonlinear model
(2.19)(2.20) has (loosely speaking) relative degree 7 := r + m at (d,%,4@). Yet this relative
degree is not well-defined in the sense that, although 1 < # < 7 is the smallest integer such that

Ok 4+

S #0 (2.23)

at (J, Z, %), smaller integers may satisfy this inequality at neighboring points. This means that
an additional approximation, called regularization {11, 5], will be needed before the approxi-
mate nonlinear model (2.19)~(2.20) may be used for inverse control calculations. The intuitive
explanation of this additional approximation is as follows: if a step response test is used to
determine the delay of the system, and a very small response is measured at k = £ — 1 with a
larger response at k = , then the delay is assumed to be equal to f rather than 7 — 1.

3 Control

For simplicity, this section considers the case when the power source is constant, i.e. when
ux = 4. The control algorithms can be easily re-derived to consider the more general case if
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desired, provided that preview information on uy is available. The output control problem is
to find the duty ratio dx which will force the sampled output g, to match a desired discrete-
time output trajectory y2. As mentioned previously, this control problem is not well-posed for
systems having unacceptable zeros, in which case some type of approximate control performance

is sought. The subscript notation

s [ I+F+.+F ,i>0
Fi= { 0 , otherwise (8.1)

will prove useful below, when defining the nonlinear controllers.

3.1 Perfect Tracking Control

Associated with the original nonlinear model (2.3)—(2.4) are families of scalar functions, defined
by ‘

Fpi(d,z) = dFi_oGu+dF 1 (F(d)z + G(d)a) (3.2)
Inlda) = Bc’F"l(F(g()ix + G(d)z) (3.3)

for i =1,...,n. It can be shown that (2.3)—(2.4) has well-defined relative degree r at (d,z) if

=0 ,i<rnear (d,z)
JP‘(d’x){ £0 ,i=rat(dz) (3.4)
in which case the input-output relation is given by V
Yk+r = Fpr(dy, z1) (3.5)

Inversion of this relation is not practical if the system’s zero dynamics is unacceptablé.
The-nonlinear perfect tracking controller is implicitly defined by solutions of the scalar

nonlinear equation
Yesr = Fpr(dy, ox) (3.6)

for dy, given z; and ¢ +r- The input nonlinearities prohibit a closed-form solution; however,
for sake of illustration, note that the equivalent control objective translated to the linear ap-
proximate mode! would yield the explicit linear inverse control

d =gg+r~_clﬁjik
cFr-1H

Numerical search procedures will be given for implementation of the general nonlinear perfect

(3.7)

tracking control.




3.2 Approximate Tracking Control

Associated with the appraximate nonlinear model (2.19)-(2.20) are families of scalar functions,
defined by :

Fai(d,z) = (c—&)'z+¢&F_2Gu+dF~1(F(d)z+G(d)a) (3.8)
Al -1 i
Tl ) = 8¢ F (F((;i‘)i:c +G(d)d) (59)

for i = 1,...,n. Although (2.19)—(2.20) cannot be expected to have a well-defined relative
degree at (d, Z), it is reasonable to regularize by neglecting certain small input-output couplings.
Since m zeros have been eliminated at (d, ) by the output redefinition, it is guaranteed that

7.} =0 ,i<7F
JAi(d1$){ 750 ,i=7 (310)

Regularization is achieved by assuming that Jai(d,z) = 0 for i < 7 at all points near (d,%) as

well, which leads to an approximate input-output relation given by
Uk+7 = Faz(dk, 7k) (3.11)

Inversion of this relation involves cancellation of only acceptable zeros, by construction.
Since § is a reasonable approximation of y at low frequencies, the nonlinear approximate
tracking controller is implicitly defined by solutions of the scalar nonlinear equation

Yi+r = Fas(dy, zx) (3.12)

for d, given values for z; and yﬁ +#- Like the perfect tracking control, the approximate tracking
contro] for the nonlinear system cannot be expressed in closed-form due to the input nonlin-
earities, However, if one was content to apply a linear approximate tracking control designed
on the same principle but neglecting the nonlinearities, then the algorithm would be explicitly

written as ..
g o Teae = CF %
&¢F-1H
In the remaining subsections, numerical iterative procedures for appraximately computing the
nonlinear tracking controllers will be described.

(3.13)

3.3 “ Nonlinear Newton Iteration

The standard nonlinear (NL) Newton iteration could be used to solve (3.6) or (3.12) in recursive
fashion. The solution process begins by taking an initial guess dio) of the solution dy. Given
this duty ratio, one applies the iteration

s+ _ g - P& om0 e (3.14)
T Ie(@) '




where

Jpr(d,z) = ¢ FT1T®,((1 — d)T)((A1 — A2)(®1(dT)z + T1(dT)@) + (by — b2)@)  (3.15)

for perfect tracking control, or the iteration

;  Fae(d®,z) — 1fs
do _ gor _ Farldy ,z,;) Virr (3.16)
JAf(dk ,:Ek)

where
Jas(d, z) = EF1T3,((1 — d)T) (A1 — A2)(®1(dT)z + T'1(dT)a) + (b — b2)a)  (3.17)

for approximate tracking control. The outcome of the iteration is a new candidate solution
dg) . Iteration continues until either the step-size dﬁj ) _ df ) is within the stopping tolerance,
or until the maximum number of permissible iterations has taken place. Convergence from an
arbitrary initial guess dl(co) is not guaranteed, unless backtracking is used to limit the length of
the Newton step [17].

The NL solution method involves a great deal of computation. Increased accuracy is
achieved only by increasing the number of terms in the series approximations of ®;(-) and
I;(-), which implies increasing the computation per iteration in a linear fashion. For any fixed
number of terms in the series, the growth in computation per iteration with respect to n is

cubic.

3.4 Piecewise-Linear Newton Iteration

To avoid the need for repeated evaluations of ®;(-) and TI'y(-), 2 new piecewise-linear (PL)
approach, inspired by [7], has been suggested in [1, 2]. The input nonlinearities appearing in
either (3.6) or (3.12) will be replaced by corresponding PL approximations. For an N-segment
PL approximation over the domain d € [0,1], the index o = 1,..., N locates any particular
segment of interest. To insure that the PL approximations coincide with the input nonlinearities
at segment boundaries, the coefficients of the approximation are related to functions identified
in the original nonlinear system (2.3)-(2.4) or its nonlinear appraximation (2.19)—(2.20) as
necessary. The parameterized PL functions used to approximate the nonlinearities are given by

Fpo(d,z) ~ (efd+BF) z+ (v d+6F) @ (3.18)
for perfect tracking control, or by
~ (A A A A\ -
Far(dy2) = (ofd+ B28) o+ (vdd+6}) a+e (3.19)

for approximate tracking control.
A PL version of Newton’s iteration is the recommended numerical method to solve either
(3.6) or (3.12) in recursive fashion. The solution process begins by taking an initial guess o©
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of the segment containing the solution di. Given this segment, the iteration is given by

£ _ Ybsr = (B T + 65T (3.20)
aloyzk + V) '
for perfect tracking control, or by
, —(BA.z+6A Tt e
dg.*.]) — yg+r ('Bg(J) k ali) ) (321)

af)Tk + Yy

for approximate tracking control. The iteration will produce'a new candidate solution dg) and
a corresponding new candidate segment o). Iteration continues until eifher dk(jﬂ) belongs
to segment ¢{?) or until the maximum number of permissible iterations has taken place. The
convergence properties of PL Newton iterations are discussed in [7]; the only form of non-
convergence is cyclic divergence, which can be detected and overcome without difficulty. In the
present application, even cyclic divergence did not occur.

The above PL solution procedure is more reliable numerically and more efficient compared
to the NL solution procedure. Accuracy improves as the number of segments N is increased,
but computation per iteration is independent of N, so the only penalty for increasing N is
a corresponding linear increase in memory storage. For any fixed N, the computation per

iteration exhibits linear growth with respect to n.

4 Examples

Three examples serve to illustrate the theory introduced in this paper. The circuit diagrams for
three power electronic converters are shown in Fig. 4.1. Assuming in each case that load voltage
is the output, the buck converter will be shown to possess a stable but otherwise unacceptable
zero, whereas the boost and buck-boost converters will ‘be shown to possess an unstable, and
hence unacceptable, zero. Consequently, each converter benefits from the output redefinition

technique recommended in this paper.

4.1 Converter Models

The buck converter is defined by

fll: ? —%] b1=[

The boost converter is defined by

A=

LO

0.

0
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RC

B

(=X o (]

Ot~

The buck-boost converter is defined by
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Buck-Boost Converter

Figure 4.1: Common switchmode power converters.

- 10




For all three converters, z; is the inductor current, z2 is the capacitor voltage, the circuit
component values are R = 10 §2, L = 2 mH, C = 200 pF, and the constant voltage source is
@ = 100 V. For the buck converter the switching period is T = 50 ps, whereas for the boost
and buck-boost converters the switching period is T = 200 ps. Note that these parameterv
values were chosen for illustration purposes only; the control design methods of this paper can
be applied equally well for other parameter values.

4.2 Zero Locatiqns

The locus of the (real) zero versus switching period T is shown in Fig. 4.2, for all three converters.
The zero locations are computed from the converters’ transfer functions evaluated at d =0.5.
The limiting zero locations, for small and large T, are as predicted in [4]. From these plots,
it is clear that the buck converter is minimum phase for all values of T', yet has & zero near
—1 for the smaller values of T which are of greatest interest. On the other hand, one can see
that the boost and buck-boost converters are non-minimum phase for the smaller values of
T which are of greatest interest. To be more precise, the buck converter zero corresponding
to d = 0.5 is located at z = —0.9876, the boost converter zero corresponding to d =05 is
located at z = 1.3281, and the buck-boost converter zero corresponding to d = 0.5 is located
at z = 1.8562. The finite zero of all three converters is designated as unacceptable, and the

control design proceeds with output redefinition.

4.3 Output Redefinition

In order to remove the unacceptable zero from the queI prior to inverting the dynamics, it
is necessary to determine the appropriate vector ¢ from (2.18). Assuming that the equilibrium

point of interest corresponds to d = 0.5, the computations yield

. _ | —0.1259 N
é= [ 1.0126 ] (c—¢é)' z =-0.0392 (4.9)
for the buck converter
. [ 0.9351 o
é= [ 0.6553 ] (c—¢&)'z =35.5671 (4.5)
for the boost converter and
R —0.4843 o =
é= [ 0.8660 ] (c—&) z=—5.2497 (4.6)

for the buck-boost converter. A comparison of Bode plots for the original and approximaﬁe
small-signal models, provided in Figs. 4.3-4.5, reveals that the approximation of ¢ by ¢ does
not significantly alter the frequency response within a low frequency range.

The consequence of output redefinition is further illustrated by comparing several scalar .
Jacobians. In Fig. 4.6, the Jacobians Jp1, Ja1 and J42 are each plotted for various equilibrium
values (d,Z). Note that near d = 0.5, all three converters with output y have-well-defined
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Figure 4.3: Bode plots for buck converter.
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Figure 4.4: Bode plots for boost converter.
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Figure 4.5: Bode plots for buck-boost converter.
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relative degree r = 1, due to the fact that Jp; is nonzero. At d = 0.5, the value used for output
redefinition, the relative degree of all three converters with output § should be # = 2. This
increase in relative degree (or, equivalently, this decrease in the number of zeros) is confirmed
by the fact that J4; crosses zero at precisely d = 0.5. However, since J 41 1s not identically zero
in a neighborhood of d = 0.5, the relative degree of two is not well-defined. This motivates a
second approximation, in which the small but nonzero values of J 41 near d = 0.5 are neglected.
The second approximation leads to an approximate two-step-ahead input-output relation, with
Jacobian J4o. Note that J4o is nonzero and .dominates Ja1 in magnitude for all d near 0.5.
Unfortunately, a relative degree singularity exists for the boost and buck-boost converters where
Jao crosses zero, and hence the maximum duty ratios permitted for these two examples would
be 0.6177 and 0.5951, respectively. By scheduling the output redefinition, this difficulty may
be avoided.

4.4 Output Tracking

To illustrate the application of output redefinition methods for these converters, simulations
were run using sinusoidal load voltage objectives. Specifically, the desired output sequence is
given by
50 — 35sin (1207 (kT)) , buck
y? = { 200 — 55sin (207 (kT)) , boost 4.7)
—100 — 40sin (207 (kT)) , buck-boost

The simulation results for perfect tracking control are displayed in Figs. 4.7-4.9. Note that
in each simulation, cancellation of the converter’s zero (as required for perfect tracking) leads to
unacceptable behavior. For the buck converter, high-gain is needed which leads to numerical ill-
conditioning and highly oscillatory behavior of the control input and inductor current; even the
ability to achieve truly perfect tracking is not present due to control saturation. For the boost
and buck-boost converters, the instability associated with the inversion of the system leads to
unbounded inductor current; the control input remains bounded only because the converters
are lossless with infinite dc gain as d approaches 1. '

The simulation results for approximate tracking control are displayed in Figs. 4.10-4.12.
The desired trajectories for these simulations are the same as those used in the perfect tracking
control simulations, in order to allow direct comparison. Although in all three cases the tracking
performance is only approximate, rather than asymptotically perfect, note that the high-gain
oscillatory effect has been removed in the buck converter response and that the unboundedness
of the internal state has been removed in the boost and buck-boost converter responses.

5 Conclusions

This paper addresses the topic of digital tracking. control desfgn for PWM systems. Two
concepts, namely output redefinition and piecewise-linear Newton iteration, contribute to the
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Figure 4.7: Perfect output tracking for buck converter.
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Figure 4.8: Perfect output tracking for boost converter.
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solution of this control problem. Power electronic converter examples are provided to illustrate
the advantages of the proposed control design.

The key concept, output redefinition, is the main subject of the paper. Due to the effects
of sampling, it is common to encounter sampled-data systems with unacceptable zero dynam-
ics. For such systems, perfect output tracking is not a practical control objective. The only
alternative is to design a controller which provides approximate tracking performance, while
guaranteeing internal stability and reduction of oscillatory modes. The approach is simple: the
original system is appraximated by one with acceptable zeros, and the approximate system’s
inverse control is applied to the original system. |

A secondary conéept, piecewise-lineaf Newton iteration, also plays an important role in this
paper. Since the sampled-data models of PWM systems inherently contain input nonlinearities,
closed-form solutions for digital tracking controllers are not generally available. Instead, it
is necessary to compute the appropriate duty ratio control inputs using a numerical search.
A particularly efficient numerical method is the piecewise-linear Newton iteration, which is
summarized in this paper. See [1, 2] for a more complete discussion of the piecewise-linear
technique.

The results of this paper can be extended in several ways. Perhaps the most severe limitation
of the proposed method is the need for accurate parameter knowledge. One possible remedy
would be to augment the controller with an on-line parameter identification scheme. Another
limitation which can arise is a relative degree singularity located at mid-range duty ratio values.
Such a singularity would artificially limit the maximum permissible excursion of duty ratio and,
hence, of desired output. This problem can be overcome by using scheduled output redefinition.
It is also worth pointing out that alternative methods for transfer function approximation exist,
leading to alternative forms of approximate tracking controllers. For example, it may be possible
to shape the frequency response of the approximate design model, in order to meet specifications
on the magnitude and/or phase error over a given frequency range. Finally, to avoid control
saturation, it can be advantageous to relax the deadbeat tracking objective by designing linear

error dynamics to achieve asymptotic transient response.
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Abstract

Power electronic converters used in motor drives exhibit nonlinear behavior due to dead time and
other circuit imperfections. Motors and their mechanical loads are often characterized by significant
ponlinearities as well. Since the parameters describing the system are not always accurately known,
improved motion control performance may be attempted by using nonlinear adaptive control meth-
ods. In this paper, the focus is on a dc motor fed by a full-bridge dc-dc converter. A linearizing
adaptive motion controller is derived for the overall system, under the assumption that the param-
eters describing the converter, the motor, and its load, are all unknown. The controller guarantees
global stability and asymptotic tracking.

1 Introduction

DC servo drives are typically powered by full-bridge dc-dc converters. Such converters can apply at most
three voltage levels to the armature winding: the positive bus voltage, the negative bus voltage, and
possibly zero voltage. Control is achieved by varying the duration of voltage levels applied within each
switching cycle, using pulse width modulation (PWM) The resulting mechanical motion responds to
the moving average of this two- or three-level voltage signal and, as a first approximation, this moving
average depends linearly on the duty ratio command. On a more detailed level, the converter actually
exhibits a nonlinear behavior due to dead time, imperfect transistor switches, parasitic capacitance in
the circuit, etc.

Dlé&d time is a time delay inserted between switch transitions to avoid shorting the voltage bus to
ground. During the dead time the output voltage is not defined simply by the control logic, but also by
the direction of current flowing through the armature winding. The anti-parallel diodes, which provide
a closed path for the inductive load current, distort the voltage pulses during the dead time because
their conduction leads to unintended voltage magnitudes. Switch imperfections include voltage drop,

*This work was supported in part by the National Science Foundation under grant ECS-9158037 and by the Office of
Naval Research under grant N00014-96-1-0926.
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and unequal turn on and turn off times. The voltage drop reduces the effective voltage applied across
the motor terminals. The effect of unequal turn on and turn off times is similar to that of the dead time.
Parasitic capacitance introduces a dynamic effect which limits the rates of rise and fall of the voltage
pulses applied across the motor terminals. This dynamic effect can be approximated by an additional
time delay. In certain operating regimes, the converter nonlinearities can introduce significant distortion
into the armature voltage and, consequently, into the armature current. This current distortion may lead
to unacceptable torque errors, in which case converter compensation is desired for improved performance.

Some compensation schemes addressing this problem, but for the case of three-phase dc-ac inverters,
have recently appeared in the literature. In Mohan et al. (1989), Qoltage error introduced by the dead
time is modeled and current control is suggested as a means of oﬁercoming the distortion. In Sepe and
Lang (1994), exhaustive measurements are made to characterize the distortion caused by the dead time
and an approximate dead time inverse is used as a pre-processor to the inverter. The accuracy of the
compensation depends entirely on the precision of the required off-line calibration. In Murai et al. (1987),
the dead time interval is measured on-line and a correcting voltage pulse is added to the input voltage to
compensate for the inverter nonlinearity. Such a scheme requires extra hardware circuitry. In Sukegawa
et al. (1991), knowledge of the dead time is assumed and a corresponding correcting signal is added to
the reference voltage commands in the dq frame of reference. No switch imperfections are considered.
In Choi and Sul (1996), a more general compensation scheme is developed which accounts for the dead
time, unequal turn on and turn off times, and the voltage drop across the inverter switches. However,
at least two off-line tests are required to compute the appropriate voltage correction. Moreover, the
currents are assumed to be well regulated.

Voltage distortion is due not only to dead time but is also influenced by other factors, like switch
imperfections and circuit parameters. Consequently, off-line pre-calibration yields best results when
performed on a converter/motor pair. The approaches which require pre-calibration are not only in-
flexible, they would also lead to performance degradation if the converter and/or motor parameters
change slowly over time. Even without the complexities introduced by the converter nonlinearity, the
design o‘f high-performance motion controllers for motor drives is a challenging subject due to the lack
of accurate mechanical load models for most applications. Parameters such as load inertia, load torque,
and friction coefficients, are all typically unknown and will almost certainly change over time. Hence,
in order to achieve a motion control response which is invariant with respect to the mechanical load,
adaptive control methods are typically required. In all of the references cited above, the converter and
the motor are treated as separate entities and no attempt is made to develop adaptive controllers or to
guarantee stability of the overall design (see Sira-Ramirez et al. 1993 for adaptive control of buck, boost,
and buck-boost converters).

In this paper, a technique motivated from Recker (1993) and Tao and Kokotovic (1994, 1996) is used
for adaptive control .of the converter-motor-load combination. The converter is modeled by a piecewise
linear function. In order to avoid the need for pre-calibration, and to account for the possibility of
slowly drifting system characteristics, the converter, motor and load parameters are considered to be

unknown. Estimates of the unknown parameters are used by the adaptive controller to cancel the
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Figure 1.1: Structure of the adaptive control system.

converter nonlinearities and to achieve a motion control objective. The closed loop system is shown to
be globally stable and to provide asymptotic tracking. Fig. 1.1 illustrates the overall structure of the

control design, which accomodates either speed or position tracking control objectives.

2 DC Motor and Load

The dynamic model of a brush-commutated permanent-magnet dc motor, driving a simple mechanical

load, can be expressed as
é(t) = w(t) (2.1)
Juw(t) = —Bw(t)+ Ki(t) (2.2)
Li(t) —Kuw(t) — Ri(t) + (t) (2.3)

I

where v(t) is the voltage applied to the armature, i(t) is the armature current, w(t) is the motor speed,
and 6(t) is the motor position. The constant coefficients describing the motor are the torque constant
K, the armature resistance R, and the armature inductance L. The constant coefficients describing the
mechanical load are the total moment of inertia J and the total viscous friction coefficient B. This simple
load model is chosen for sake of simplicity; more complex load nonlinearities can be easily incorporated
into the adaptive controller, provided that they are linearly parameterized functions of 8(t) and/or w(t).

Armature current i(t), motor speed w(t) and (when necessary) motor position 6(t) are assumed
to be measured. Although it is possible to eliminate measurement of internal signals (i.e. i(t) for
speed control or both i(t) and w(t) for position control) using methods described in Tao and Kokotovic
(1994, 1996), such an approach is not recommended due to the significantly increased complexity of
the controller. Measurement of i(t) is both inexpensive and common industrial practice, and w(t) is
typically approximated from measurements of 6(t) rather than measured separately. As illustrated in
Fig. 1.1, measurement of voltage v(t) is not required for the control design. This is in contrast to the
(non-adaptive) method used in Murai et al. (1987).
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3 DC—DC Converter

A full-bridge dc-dc converter is shown in Fig. 3.1. This converter consists of two legs, each having two
transistor switches S;, and two diodes D;. The motor windiné is connected across the mid-point of each
converter leg. The output voltage v(t) can have at most three possible values as determined by the state
of the tran.sistor switches. For example, turning on switches S; and S3 would apply Vi, While turning
on S and Sy would establish —Vj,, across the motor winding. Zero voltage is applied if either S; and
Sy are on, or Sz and S3 are on. Turning on both switches in one leg, i.e. S; and S or S3 and Sy, would
short the voltage bus to ground and must be avoided by including a dead time in the switching logic as
described below.

Any average voltage level between +Vjy s and —Vpy,, over each switching period T, can be produced
by the converter. Consider the time interval [kT, kT + T) where k =0, 1,2, ---, which is partitioned into
two subintervals, [kT, kT + d;T) and [kT + d,T, kT + T), by the duty ratio di € [0,1]. The voltage v(t)
in each switching cycle will be {+Viys, —Vius} for bipolar PWM, and either {+Vjus,0} or {—Vbus, 0} for
unipolar PWM. The average value of voltage produced during the kth cycle is computed from

1 kT+T
=L / olt) dt (3.1)
T Jir




3.1 Converter Modeling

The voltage distortion introduced by the dead time can be explained with reference to the circuit diagram
in Fig. 3.1 and the timing diagrams in Figs. 3.2 and 3.3 for the bipolar and the unipolar PWDM respectively
(see Mohan et al. 1989 also). The duration of the dead time t4 has been exaggerated so that its effect
can be seen clearly. The signal u(t) is the input to the converter and represents the desired average value
of the voltage output v(t). In analog PWM implementations, u(t) is compared to a triangular carrier
waveform and the comparator output is latched once per switching cycle to produce vig.u (t), the desired
terminal voltage waveform. In digital PWM implementations, the timing information contained in the
waveform vse.. (t) is specified directly by the duty ratio, which in turn is computed from u(t). For either
implementation, the waveforms labeled Sy, Sz, S3 and Sy are logically derived from u(t), but with the
dead time inserted as necessary; these signals serve as the gate commands to the transistor switches.

Consider first Fig. 3.2 for the bipolar strategy. The desired voltage Vygen (t) switches between +Viy,
and —V,, and is thus a bipolar waveform. SWitch% (51, S3) and (S2, S4) are operated as pairs. Positive
voltage +Viy, is applied by turning on (S, S3), while (S2, S4) are turned off. Negative voltage —Vpu, is
applied by turning on (S2, Sy), while (S, S3) are turned off. For either voltage polarity, dead time 24
must be inserted between turn-off instants and turn-on instants. During the dead time, all switches are
simultaneously turned off. Consequently, the direction of current i(t) will determine the actual voltage
v(t) during the dead time. If i(t) > 0, diodes (D2, D4) will conduct and v(t) = —Vby, during the dead
time. If i(t) < 0, diodes (D, D3) will conduct and v(t) = +Vju, during the dead time. When i(t) = 0,
the induced back-emf voltage appears across the converter terminals; this isolated open-circuit state will
be disregarded. The actual v(t) waveforms shown for the two current polarities clearly differ from the
Vig.u(t) waveform, due to dead time distortion.

Now consider Fig. 3.3 for the unipolar strategy. The desireci voltage V4. (t) switches between 4V,
and 0 when positive voltage is requested, or between —V;y, and 0 when negative voltage is requested,
and is thus a unipolar waveform. There are two ways to apply zero voltage, by turning on (S1, S4)
with (S, S3) turned off, or by turning on (S2, S3) with (81, S4) turned off. This degree of freedom can
be exploited, so that voltage v(t) may be produced at frequency 1 /T while operating the switches at
the lower frequency of 1/2T. The period 2T switching logic may be described for the positive voltage
case as follows. During the first T interval, positive voltage +Vjy, is applied by turning on (S1, S3)
with (S2, S4) turned off, and this is followed by a zero voltage state obtained by turning on (51, S4) with
(S2, S3) turned off. During the second T interval, positive voltage +Vsu, is applied by turning on (51, S3)
with (S2,Ss) turned off, and this is followed by a zero voltage state obtained by turning on (Sz, S3) with
(S1,S4) turned off. This mode of operation requires just 2 transitions (from all 4 switches) every 2T
seconds; if one insists on a period T' switching logic with uppei' or lower switches used exclusively to
reach the zero voltage state, then the requirement would be 4 transitions (from 2 of the switches) every
2T seconds. To avoid short-circuiting the dc input, dead time ty must be inserted between all turn-off
instants and turn-on instants for a given leg. During the dead time, both switches of the given leg are
simultaneously turned off. Consequently, the direction of current i(t) will determine the actual voltage
v(t) during the dead time. The actual v(t) waveforms for both current polarities are displayed in the
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Figure 3.2: Bipolar PWM switching scheme.

figure, and comparison with v;4., (t) reveals significant distortion.

The mathematical model of the converter is most easily derlved under the assumptions that the
transistors and diodes are ideal (i.e. that the only source of distortion is the dead time), and that i(t)
does not change signs within the kth switching cycle. The output voltage v(t), in the presence of dead
time, is modeled by

—Sgn(ik)vbu, , KT <t <kT +14
(t) = +Vius , KT+t <t<kT+d,T 3.2)
V=0 —sgn(ix)Vius » AT+ &T <t < KT +diT + 3.
—Vbus , kT +d T+t <t<kT+T
for the bipolar PWM and by
%sgn(uk)z(sgn(uk) —sgn(ix))Vous , kT <t <kT +14
o(t) = sgn(uk)Vbu, y KT+t <t < kT +d;T (3.3)
%sgn(uk)z(sgn(uk) —sgn(ix))Vous , kT +dT <t <kT+dp T+ tg :

0 KT+ de T+t <t<kT+T

for the umpolar PWM, where the duty ratio is confined to the interval di € (—4 1 — %). These mathe-
matical expressions for v(t) are obtained directly from the waveforms displayed in Figs. 3.2 and 3.3.

As previously mentioned, the objective is to operate the switches in such a way as to guarantee that
the average output voltage during the kth cycle, vk, will be equal to the commanded value ug. This
objective is not easily achieved, even when the transistors and diodes are ideal. To understand why this -
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is so, note that the kth cycle average output voltage computed from (3.1) is

o, = { Vous ((2dx — 1) — 2 sgn(ix) %) RV bi;?olar PWM (3.4)
g (k) Vius (0 — (1 — sgn(u) (sgn(ux) — sen(ix))) ) , unipolar PWM

From (3.4), it is clear that precise knowledge of the bus voltage Viu,, the switching period T, and the

dead time t; would be needed to select the duty ratio dy which gives the desired output o = ug. If

such precise knowledge were available, then in principle the PWM switching logic in Fig. 3.1 could be

programmed to implement

1{ 12 \tg v .
dp=1 2 1(V°"' ug + 1) + sgn(ix) T . , bu?olar PWM (3.5)
- fie] + (1 = sgn(ose) sgn(ue) = sgn(ie)))§ , unipolar PWM

Of course, the dead time is not always known, especially for off-the-shelf converters, and the bus voltage
may vary over time due to differing load conditions. If switching logic (3.5) is implemented by using
estimates £4, T' and Vius, then the average output voltage in (3.4) becomes

Vi, fa ta
O = gk + ¢k (T T) Vbus (3.6)
where
[ 2sgn(ix) , bipolar PWM 3.7)
Gk = sgn(uk)?sgn(ix) , unipolar PWM ’

The effect of the direction of current flow is accounted for by the term (., which takes values of +2 for
bipolar PWM or =*1 (or possibly 0) for unipolar PWM.

In summary, the static input-output model of the de-dc converter is given by (3.6)—(3.7), which
indicates that the average output voltage exhibits a jump discontinuity whenever the armature current

reverses direction. Whenever the discontinuity is avoided, the input-output relationship of the converter

is affine. In the ideal case when Viys = Vius, T = T, and £ = t4, the desired operation T = u is

achieved. However, if the dead time ¢, is neglected by setting t4 = 0, the error in average output voltage
will be proportional to Vbu,%‘i. Two implications immediately follow: even when fast switches with small
tq are employed, the output error will grow larger as the switching frequency is increased, i.e. as T is
decreased; for any fixed 3,14 ratio, the output error will grow in proportion to Vj,,,.

The static input-output model (3.6)—(3.7) has been derived for an ideal converter (with dead time).
This model may be modified to account for various converter imperfections. In particular, switches are
known to exhibit two types of delays. First, switches have turn-on and turn-off delays, t., and t.g,
which account for the pure time delay between when a switch control signal changes state and when
the switch begins to respond. Second, switches have voltage rise and fall times, ¢, and t;, which account
for the charging and discharging of parasitic capacitance. The consequence is that the output voltage
waveforms labeled v(t) in Figs. 3.2 and 3.3 would be both time delayed and approximately trapezoidal
rather than square in shape.

Consider first the switch control signals Sj. All off-on transitions are delayed by t., and all on-off
transitions are delayed by ¢.. Examination of Figs. 3.2 and 3.3 indicates that these delays are accounted
for by defining an effective dead time, i.e. By replacing t4 in (3.6) with t; where

£y =tg+ ton — ton (3.8)




. . .

If t,, = t.x = 0, then the redefined (3.6) obviously reduces to (3.6) as a special case. If t,, = t,« # 0,
then the redefined (3.6) also reduces to (3.6) as a special case, since the voltage waveforms simply exhibit
a phase shift which does not influence their average values. On the other hand, if ¢,, > t.q, voltage
distortion is increased. ' :

The presence of parasitic capacitance limits the rates of rise and fall of the voltage pulses. It is rea-
sonable to approximate the voltage transitions by linear ramps, leading to trapezoidal voltage waveforms
instead of the square voltage waveforms shown in Figs. 3.2 and 3.3. Given that the rising and falling
edges become ramps of duration ¢, and t,, respectively, the trapezoidal waveform may be replaced by a
square waveform with rising edge delayed by 1t, and with falling edge delayed by 31,, without affecting
the average value. Alternatively, the trapezoidal waveform may be replaced by a square waveform with
rising edge delayed and falling edge advanced by an equal time interval of -‘i—(tr —t,). Hence, the effect

of parasitic capacitance can be approximated by replacing t4 in (3.6) with t; where
: 1
tg=1ta+ Z(t' —t,) (3.9)

Note that if both ¢, and ¢, are zero, or if ¢, and t; are nonzero but equal, then no change in (3.6) is
required. Otherwise, this additional source of distortion is captured in the model by direct substitution.
Naturally, the presence of both types of switching delays is accomodated by combining the additive
terms in (3.8)—(3.9).

3.2 Piecewise Linear Converter Model

It is preferable for PWM converters to use a high switching frequency 1/T, in order to reduce switching
ripple. Under such circumstances, a standard averaging approximation may be made; the two-‘or three-
level voltage. v(t) may be safely replaced by a continuous-time representation of average voltage oy
without significantly altering the response of the system. This averaging approximation will be used
throughout the remainder of this paper.
Motivated in part by (3.6)—(3.7), the converter will be modeled in continuous-time by a general
piecewise linear expression of the form
w0 ={ b %0 5.10)
Fig. 3.4 illustrates the input-output behavior of the converter, using the parameterization of (3.10). The
constant coefficients m,, m_, by and b- depend on various converter parameters. For example, the

converter models of the previous section can be put into the new format by defining the slopes

Vbus

My =mM_ = = 3.11
* wa : ( )
and the intercepts
tg 13\ -
by = —=b_ = ——— 1V s .
. 1(3-5) o (3.12)

where v = —2 for bipolar PWM and 4 = —1 for unipolar PWM. In these parameter assignments, t4

represents the effective dead time which includes the contributions due to turn-on delay, turn-off delay,
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Figure 3.4: Piecewise linear model of the converter.

voltage rise time, and voltage fall time. Since sgn(i(t)) is determined by the direction of current only, it
is thus available as a measurement even when the converter parameters are unknown.

The piecewise linear model (3.10) does not bother to model the v(t) = u(t) = 0 zero state of unipolar
PWM converters; this zero state is achieved without switching and is easily implemented using if-then
logic. For normal switching-based converter operation, (3.10) captures all features of (3.6)—(3.7) for both
bipolar and unipolar PWM.

Note that the piecewise linear model (3.10) is more general in structure than required to capture the
simple converter models described in the previous section. These simple converters have the property
that m, = m_ and b, = —b_. The motivation for including the greater generality in (3.10) comes
from the desire to account for additional secondary effects which create asymmetries with respect to the
direction of current.

For example, the voltage drops of the transistor switches and diodes reduce the effective output
voltage of the converter. The reduction in output voltage depends on the state of the switches and the
current direction. When these voltage drops are accounted for, the magnitudes of b; and b_ will be
unequal (for both bipolar and unipolar PWM), and m, and m_ will be unequal (for bipolar PWM
only).

Another example is the existence of gain and offset errors in the circuitry that controls the switches.
These errors could arise from the comparison circuit in analog PWM converters or from the sampling
circuit in digital PWM c;)nverters. ‘When these sources of error are included in the model, the magnitudes
of b, and b.. will again be unequal. ' ,

From these two e:éamplcs, it is clear that the parameterization of (3.10) is sufficiently general to
capture many converter imperfections. As the remainder of the paper will shdw, this extra level of

generality does not significantly add to the complexity of the adaptive control system.
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4 Adaptive Control Design

The control objective is to achieve asymptotic motion tracking with closed-loop stability, despite the
presence of converter nonlinearities and parameter uncertainty. Adaptive input-output linearization is
used as the basis for control design (see Sastry and Isidori 1989 and Kanellakopoulos et al. 1991). Since
the controller includes on-line parameter estimation, detéiled off-line measurements and pre-calibration
are not necessary; moreover, the controller can automatically adjust to slowly drifting parameters. Refer

to Fig. 1.1 for a block diagram of the overall control system.

4.1 Converter Inverse

As indicated in (3.10) and in Fig. 3.4, the converter is non-ideal in the sense that v(t) # u(t). However,
since the converter is characterized by an invertible static model, the nonlinearity cancellation technique
of Recker (1993) and Tao and Kokotovic (1994, 1996) can be applied. Simpy put, the distortion intro-
duced by the converter can be attenuated by preceding the converter with a so-called converter inverse.
If the converter inverse is properly calibrated, all non-ideal features of the converter are cancelled, and
v(t) will be linearly proportional to the input of the converter inverse, v*(t).

Note from (2.3) and (3.10) that the overall model contains products of converter parameters and
motor parameter 1/L. To provide a linear parameterization, (3.10) is rewritten in the form

1 doru(t) —9c2 , i(t) >0
oo ={ geld = de 1820 (1)

where
B = my myby m_ m_bo T 4.2
c=\1 T L N L ( - )

is the vector of unknown converter-dependent parameters. The adaptive converter inverse is defined as

BZ3(t) (v*(t) + Dca(®)) , i(t) >0

-1 3 , (4.3)
I53(t) (v*(8) + Fcalt)) , i(t) <O

ut) =

where v*(t) is the converter inverse input and J¢(t) represents the estimated value of 9¢.
The relationship between the converter inverse input v*(t) and the converter output voltage v(t) is

%v(t) = v*(t) + WE()Po(2) (4.4)

where the converter regressor vector is

Wet) = [ —xe@u) x:@) —x-(u@ x-@© ] (4.5)
wo = {30020, @
x-(t) = {(l) ,:)(tt}ze:w?se (4.7)

and where 9¢(t) = 9¢(t) — 9¢ denotes parameter estimation error. Note that Wc(t) depends only on
sgn(i(t)) and u(t), and can thus be computed without knowledge of 9¢ and without measurement of
v(t). In the ideal case where J¢(t) = ¥ for all t > 0, the converter output voltage obeys %v(t) = v*(1).
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4.2 Estimated Normal Form

The complete model of the dc motor drive, which includes the motor and load dynamics (2.1)-(2.3) as

well as the cascade combination of the converter inverse and the converter (4.4), is given by

6t) = w(t) | (4.85
O(t) = —Ppw(t)+ OLai(t) (4.9)
i(t) = —Oanw(t) — Iaai(t) +v*(t) + WE(t)dc(t) (4.10)

where the vector of unknown motor-dependent parameters is
T
dm=[% £] (4.11)

and the vector of unknown load-dependent parameters is

T
=[5 §] (4.12)
To prepare for adaptive input-output linearization, consider the estimated acceleration defined by
a(t) = =B ()w(t) + Dra(t)i(?) (4.13)

where U (t) is the estimated value of 9. As shown in Kanellakopoulos et al. (1991), since all unknown
parameters of the motor drive system are separated from the control input by no more than one in-
tegration, a change of variables from armature current to estimated acceleration will lead to certain
advantages. In contrast, note that a change of variables from armature current to true acceleration (as
suggested in Sastry and Isidori 1989) would instead lead to overparameterization and other disadvan-
tages. ) .

Using the change of variables suggested above, i.e. replacing armature current with estimated accel-

eration, the dc motor drive model is transformed into the estimated normal form

61t) = w(t) (4.14)
O(t) = aft) +wt)Fri(t) - i(t)SLa(t) (4.15)
a(t) = fu(®)+ fi(t) + Bro(t)v* (@) + FL2(OWE (1) (2) (4.16)

where 9(t) = 9L(t) — 9 L represents parameter estimation error and
fol®) = (=Bua(®) + 901 (0001 — Bra(®)Bans ) w(2) (4.17)
5t = (19L2(t) — Hpa(t)02 — 1§L2(t)19M2) i(t) (4.18)

Note that if one neglects parameter estimation errors, this new model is simply a chain of integrators
with control input v*(t) and functions f,(t) and fi(t) all located in the bottom equation.

4.3 Motion Controller

The motion controller is derived by applying input-output linearization after replacing all unknown

parameters in the estimated normal form By their estimated values, yielding

v () = 973(t) (~Fo® - () + A®) (4.19)
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where -

o) = (~Da(®) +91a@921(6) — D12 (s (1)) w(t) (4.20)
fil) = (51,2(0 — ()0 L2(t) - 1§L2(t)1§M2(t)) i(t) (4.21)

and where A(t) represents a linear error feedback. The design of A(t) depends on the control objective,
e.g. either position control or speed control. In (4.20)—(4.21), D (t) is the estimated value of 95 and, as
usual, s (t) = Opr(t) — 9 will denote the corresponding parameter estimation error. Implementation
of (4.20)-(4.21) will be achieved by replacing the terms '& £1(t) and 51,2 (t) by the right-hand-sides of the

. corresponding update laws to be determined in the next section.

For position tracking control, with desired position trajectory 84(t), the outer feedback loop is given
by
A(t) = —cTes(t) +0(t) (4.22)
where the error vector is
6(t) - 65 (2)
eolt) = | w(t)—68(2) (4.23)
 La®-670)
and where ¢4 is a feedback gain vector chosen such that 83+ cg3s? + cga5 + Coy is & Hurwitz polynomial.

The closed-loop error dynamics are

és(t) = Ages(t) + W (1)5(2) (4.24)
where
[0 1 0
Ag = 0 0 1 (4.25)
| —Co1 —Co2 —Coa
[ O1x4 0 0 0 0
W) =  Ouxq 0 0 _w(t) _—i(t) (4.26)
| Fa@)WE@R) Fre(w(t) Fr2(t)i(t) —Iri(®w(t) Fra(t)i(t)
5 = [dL® L T ] (4.27)

For speed tracking control, with desired speed trajectory wy(t), the outer feedback loop is given by

A(t) = —cTe, (t) + wiP(2) (4.28)
where the error vector is © '
_ | wl(t)—wg (t)
)= [ a(t) —w@(t)] 29

and where c,, is a feedback gain vector chosen such that s2 + ¢,28 + ¢, is 8 Hurwitz polynomial. The

closed-loop error dynamics are
eu(t) = Aveu(t) + WI()9() - (4.30)
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where
0 1
A = [—Cux -'cwz] (4.31.)
s O1x 0 0 w(t) —i(2)
WEO = | 50020 Gy 50 —inie® duii | @9
8ty = [ 95w L) T " | (4.33)

4.4 Parameter Adaptation and Stability Analysis

As shown above, the combined effect of the cancellation loop and the pole placement loop is to achieve
closed-loop error dynamics governed by

é(t) = Ae(t) + W(t)TH(t) (4.34)
where A, e(t), and W (t) depend on the control objective. Now consider the Lyapunov function candidate
V(t) = e(t)T Pe(t) + 97 ()T~ 19(¢) (4.35)

where I' is a positive-definite symmetric adaptive gain matrix and P is the positive-definite symmetric

matrix which solves the Lyapunov equation
ATP+PA=-Q (4.36)

given any positive-definite symmetric matrix Q. Time differentiating both sides of (4.35) gives

V(0) = —eT()Qe(t) + 287 (2) (T-5(t) + W(t) Pe(t)) (4.37)
Selecting the parameter update law _
H(t) = —TW(t)Pe(t) (4.38)
reduces (4.37) to
V(t) = —eT(t)Qe(t) <0 (4.39)

Even though the update law (4.38) guarantees that V(t) is non-increasing, it may lead to another
problem. Specifically, note that the possibility of division by zero exists in both the converter inverse
(4.3) and in the motion controller (4.19). However, under the reasonable assumption that positive

constants 9%, ¥4, and ¥, are known such that

do1 > 19%1 o3 > 19003 92 > 19%2 (4.40)

it is possible to use projection on (4.38) in order to guarantee that division by zero will not occur while
also guaranteeing that V() < 0 continues to hold (see Joannou and Sun 1996).

In summary, the complete a.daptivebontrol system consists of the adaptive converter inverse (4.3),
the adaptive inner-loop of the motion controller (4.19), the adaptive outer-loop of the motion controller
(4-22) or (4.28), and the parameter update law (4.38) modified by projection. A Lyapunov function
V (t) satisfying V (t) < 0 has been found, which guarantees that tracking error e(t) and parameter error
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t§(t) are bounded and confined to a closed ellipsoidal region in the error space. Application of Barbalat’s
Lemma (see loannou and Sun 1996) allows the further conclusion that e(t) — 0 as t — oo, i.e. that
the tracking error converges to zero asymptotically. The boundedness of all signals in the closed-loop
system, as well as the asymptotic tracking capability, are guaranteed for all bounded initial conditioné
and all bounded reference trajectories. .

There are several special cases for which the adaptive control system simplifies. For example, if any
parameter vector 9¢, 9, or ¥y, is known a priori, then this known vector does not need to be estimated
on-line. Instead, one would simply plug the known vector into the adaptive converter inverse or adaptive
motion controller as necessary, and the corresponding update law would be disregarded.

5 Simulation Results

Two computer simulations were performed to support the results presented in this paper. In both
simulations, all parameters of the converter-motor-load combination are assumed to be unknown, and

the control objective is speed tracking. The converter parameters are: m, = 0.8, b, = 5.5, m_ = 1.2,

and b = —5. The motor and load parameters are: B =0.5, J =1, K =5, R = 1.3 and L == 0.7.
Hence,

9c = [1.143 6286 1714 ~8571]7

Sy = [7.143 18577

9, = [05 5]

The initial parameter estimates are chosen to be

dc(0) = [1 01 0]
dm(©) = [3571 09297
8.0) = [025 6]

This choice corresponds to assuming an ideal converter, & unity inductance, and motor and load param-

eters equal (in most cases) to one-half of their true values. The gains are chosen to be

.

€ = [144 24]7

10 1
P = [1 0.2J

T diag {0.2, 250, 0.2, 200, 50, 5, 5, 0.5}

and the projection parameters are selected to be
1 1 1
81 = 3901 0¢s = g3 922 = 3912

Although not necessary, projection was also used on all other parameter estimates to keep them positive
or negative as appropriate; this option enhances parameter convergence. During the first 2 seconds, no

parameter adaptation is performed and the controller uses the fixed initial parameter estimates.
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Figure 5.1: Case 1, speed and speed error.

In the first simulation, shown in Figs. 5.1-5.4, the motor is commanded to track the speed trajectory
wq(t) = 2cos(2rt)

During the first 2 seconds when adaptation is disabled, a large speed tracking error persists and the
converter output voltage exhibits significant jump discontinuities. After a few seconds of adaptation, the
speed error is reduced essentially to zero even though a nonzero error in converter output voltage remains
at steady-state. The voltage jump discontinuities are, however, significantly reduced by the adaptation
process. Note that the parameter estimation error does not converge to zero in this simulation.

In the second simulation, shown in Figs. 5.5-5.10, the motor is commanded to follow the desired
speed

wy(t) = 2cos(2nt) + sin(6mt)

In this case, the large speed and voltage errors present in the untuned response are both reduced
pracffically to zero shortly after adaptation is enabled, as the parameter estimates converge to the true
parameter values. This parameter convergence occurs because the desired trajectory is sufficiently rich
in frequencies. .

From both simulations, it is interesting to note that adaptation of the motor and load parame-
ters occurs on a continuous basis (unless projection is activated), whereas adaptation of the converter

parameters occurs piecewise in time according to the sign of the armature current.
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Figure 5.5: Case 2, actual and desired speed.
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6 Conclusion

This paper has presented a new state-feedback adaptive motion control scheme for converter-fed dc
motor drives. The model on which the control scheme is based includes various converter nonlinearities,

the electromechanical dynamics of the motor, and the mechanical load. The control scheme guarantees

global stability, and provides asymptotic motion tracking, even when none of the parameters of the

converter-motor-load combination are known.

Converter output voltage measurements are not required. By making use of full-state measurements,
the need for filtering input-output signals is eliminated and the design of the adaptive controller is
simplified. For the most general case, only eight parameters need to be estimated on-line. When
converter symmetry is assumed, the number of parameters drops to just six.

Extension of the adaptive control scheme presented in this paper to inverter-fed ac motor drives is
the subject of on-going research and will be reported elsewhere.
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Abstract

An ac motor drive consists of a dc-ac inverter, an ac motor and some mechanical load. The
inverter supplies electrical power in an appropriate form to the motor, which in turn provides the
conversion to mechanical power needed to drive the load. All three components of the system are
characterized by models which are nonlinear and contain unknown parameters. Improved motion
control performance may thus be attempted by using nonlinear adaptive control methods. In this
paper, a linearizing adaptive motion controller is derived for a representative ac motor drive, under
the assumption that the parameters describing the inverter, the motor, and its load, are all unknown.
The controller guarantees global stability and asymptotic tracking.

1 Introduction

Accurate control of ac motor drives is an important topic, due to the many advantages of brushless actu-
ators fc;r electric drive systems. Although several classes of ac motors exist, the three-phase permanent-
magnet synchronous motor is often preferred in moderate-power high-performance motion control appli-
cations due to its high efficiency and unsurpassed power density. Within this family of rhotors, a popular
choice is the version with sinusoidally distributed stator windings and a cylindrical surface-magnet rotor
structure. For brevity, this paper will consider only this particular ac motor, though all of the critical
concepts carry over to other ac motors without difficulty. )
A complete ac motor drive consists of a dc-ac inverter, an ac motor and some mechanical load.
The inverter supplies electrical power in an appropriate form to the motor, which in turn provides
the conversion to mechanical power needed to drive the load. All three components of the system are
characterized by models which are nonlinear and contain unknown parameters. One novel feature of this
paper is an adaptive compensation of inverter nonlinearities. The existence of inverter nonlinearities

stems from the presence of dead time, as well as switch imperfections and circuit parasitics. Dead time

*This work was supported in part by the National Science Foundation under grant ECS-9158037 and by the Office of
Naval Research under grant N00014-96-1-0926.




is a time delay inserted between switch transitions to avoid shorting the voltage bus to ground. Switch
imperfections include voltage drop, turn on delay and turn off delay. Parasitic capacitance limits the
rates of rise and fall of inverter output voltages. If not properly compensated, these inverter nonlinearities
will limit the achievable motion control performance.

Some inverter compensation schemes have recently appeared in the literature. In Mohan et al. (1989),
voltage error introduced by the dead time is modeled and current control is suggested as a means of
reducing the distortion. High-gain current control is not always available; moreover, its use can lead to a
noisy non-smooth torque output. In Murai et al. (1987), the dead time interval is measured on-line and a
correcting voltage pulse is added to the input voltage to compensate for the inverter nonlinearity. Such a
scheme requires extra hardware circuitry and extra measurements. In Sukegawa et al. (1991), knowledge
of the dead time is assumed and a corresponding correcting signal is added to the reference voltage
commands. No switch imperfections are considered, and no guidance is provided to help determine the
effective dead time. In Sepe and Lang (1994), exhaustive measurements are made to characterize the
distortion caused by the dead time and an approximate dead time inverse is used as a pre-processor to
the inverter. The accuracy of the compensation depends entirely on the precision of the required off-line
calibration. In Choi and Sul (1996), a more general compensation scheme is developed which accounts
for the dead time, unequal turn on and turn off times, and the voltage drop across the inverter switches.
At least two off-line tests are required to compute the appropriate voltage correction, and the currents
are assumed to be well regulated.

Most of the prior inverter compensation methods require off-line pre-calibration. Such methods yield
best results when performed on an inverter/motor pair; their lack of modularity is inconvenient and
inflexible. Considering that certain parameters of the ac motor and its load may also be unknown and
will almost certainly change over time, nonlinear adaptive control methods are clearly well-motivated.
However, in all of the references cited above, the inverter and the motor are treated as separate entities
and no attempt is made to develop adaptive controllers or to guarantee stability of the overall design (see
Sira-Ramirez et al. 1993, however, for adaptive control of purely electronic buck, boost, and buck-boost
dc-dc converters).

In this paper, a technique motivated from Recker (1993) and Tao and Kokotovic (1996) is used
for adaptive control of the inverter-motor-load combination. The inverter is modeled by a piecewise
linear function. In order to avoid the need for pre-calibration, and to account for the possibility of
slowly drifting system characteristics, the inverter, motor and load parameters are considered to be
unknown. Estimates of the unknown parameters are used by the adaptive controller to cancel the
inverter nonlinearities and to achieve a motion control objective. The closed loop system is shown to
be globally stable and to provide asymptotic tracking. Fig. 1.1 illustrates the overall structure of the
control design, which accomodates either position or velocity tracking control objectives. This paper
extends the authors’ recent work on the simpler problem of adaptive control design for de motor drives

with dc-dc converter nonlinearities (see Khan and Taylor 1996).
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Figure 1.1: Structure of the adaptive control system.

2 AC Motor and Load

In many motion control applications, the three-phase permanent-magnet synchronous motor is used
because of its high efficiency and unsurpassed power density. The particular version considered in this
paper has sinusoidally distributed stator windings and a cylindrical surface-magnet rotor structure (see

Krause 1986 for details). The voltage equations for this motor are expressed by
va(2) R 0 07t Aa(t)
'Ub(t) =0 R 0 ib(t) + ?\b(t) (2.1)
V(1) 0 0 R i.(t) Ac(t)

where a, b and ¢ represent the three stator phases, v,(t), v5(t) and v.(t) are the phase voltages, %4(t),
ip(t) and i.(t) are the phase currents, A,(t), Ap(t) and A.(t) are the phase flux-linkages, and R is the

phase resistance. If magnetic linearity is assumed, the phase flux-linkages can be expressed by
Aa(t) L -M -M ia(t) 1. sin(N(t))
Mt |=| -M L[ -M () | +Am | sin(NO(t) — & (2:2)
Ac(2) -M -M L ic(t) sin(NO(t) + &)

where 6(t) is the rotor position, L is the stator self-inductance, M is the stator-to-stator mutual induc-
tance, A, is the magnitude of the flux established by the permanent-magnets, and N is the number of
pole pairs. From the flux-linkages (2.2), it can be shown that the torque of electrical origin is

T, (t) = NAm(ia(t) cos(NO(t)) + is(t) cos(NO(t) — &) + ic(t) cos(NO(2) + L)) (2:3)
’I‘ypjcally, the phase windings are wye-connected (with no neutral wire) and hence
ia(t) +ip(t) +ic(t) =0 (2.4)
Combining (2.4) with (2.1) and (2.2) results in
v4(t) + vp(t) +vc(t) =0 ‘ : (2-5)

Note that (2.1)-(2.3) contain an explicit periodic dependence on rotor position. This dependence on

rotor position can be eliminated by projecting the stator variables onto a reference frame fixed to the




rotor. The matrix representation for this change of variables is given by

2 [ cos(NO(t)) cos(NO(t) — &) cos(NO(t) + &
K(0@1) = \/; [ sinéNG((tg)) sinéNO((t))— 2:1 sin(IYo(t) + 2;’5)) ] (26)

It will be convenient to represent the phase voltages and phase currents in the vector form

v, (t) ] ia(t) »
Vabe(t) = | ws(t) iabe(t) = | () - (2.7)
ve(t) | ic(t)
Similarly, the transformed voltages and currents will be represented in the vector form
_ [ v ] ; _ [ (®)
Vga(t) = [ va(t) | iqa(t) = [ ig(t) (2.8)

where ¢ and d denote quadrature-axis and direct-axis components, respectively. Using these notations,

the change of variables is given by
Vo) = K(O))vase(t)  igalt) = K(6(t))iase(?) (2.9)
and its inverse is given by
Vase(t) = KT(00)vgalt)  iase(t) = KT (B(1))iqa(t) (2.10)

After some tedious but straightforward algebra, the dynamic model of the permanent-magnet syn-

chronous motor driving a simple mechanical load is given by

0t) = w(t) (2.11)
Jit) = —Buw(t)+ NX. i, (1) _ C(212)
L'ig(t) = =N, + L'ig(t))w(t) — Rig(t) +vg(t) (2.13)
L'ig(t) = NL'ig(t)w(t) — Rig(t) + va(t) (2.14)

where w(t) denotes rotor velocity and where

L=L+M No=1/3dn (2.15)

The constant coefficients describing the mechanical load are the total moment of inertia J and the
total viscous friction coefficient B. This load model is chosen for sake of simplicity; more complex
load nonlinearities can be easily incorporated into the adaptive controller, provided that they are lin-
earlj parameterized functions of 6(t) and/or w(t). Although this model remains nonlinear, the explicit
dependence of the electrical equations on rotor position has been eliminated.

The vector of phase currents iq.(t), velocity w(t) and position 6(t) are assumed to be measured. As
illustrated in Fig. 1.1, measurement of the phase voltage vector Vabe(t) is not required for the control

design. This is in contrast to the (non-adaptive) method used in Murai et al. (1987).
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Figure 3.1: Three-phase inverter feeding a wye-connected ac motor.

3 Three-Phase Inverter

3.1 Basic Operation

A switch-mode dc-ac inverter féeding an ac motor is shown in Fig. 3.1. This inverter consists of three
legs, each having two transistor switches Sy and S_, and two diodes D and D_. The motor terminals
are connected to the mid-point of each inverter leg, denoted by a, b and ¢. The motor phase windings
are wye-connected, n is the neutral point and g is the inverter ground. The inverter leg voltages (with

respect to ground g) are denoted by

vA(t) Vag ()
'UABC(t) = | vp (t) = vbg(t) (3.1)
vo() Ve (1)
and the motor phase voltages (with respect to neutral n) are denoted by
v,(t) Van(t)
Vabe(t) = | ve(t) [ =] ven(t) (3.2)
ve(t) Ven(t)

Note that v,pc(t) has been consistently defined in the motor model and in the inverter model.
kS
Application of Kirchoff’s voltage law to the inverter-motor circuit in Fig. 3.1 yields a relationship

between the inverter leg voltages v4pc(t) and the motor phase voltages Uabe(t), namely

?abc(t) = vABC(t) - vng(t)lii ' (33)
where vng(t) is the voltage drop from the motor neutral n to the inverter ground g and
l -
13=1| 1 (3.4)
1 .
9




#1104 9B Vo | Va T Ve Uy Uq
00 0 O[O0 0 O 0 0
11 o o2 -1 -1 cos(N6) sin(N6)
21 0o 1|1 -2 1 |-cos(NO—%) —sin(N§—-%
3o 0 1]-1 -1 2| cos(NO+%) sin(NO+ %)
410 1 1}-2 1 1 — cos(N¥) —sin(N6)
5/]0 1 0|—-1 2 =1| cos(NO— 2%) sin(N8 — 2—%)
6|1 1 0|1 1 =2|~cos(NO+%) —sin(NO+ <
711 1 1]0 0 O 0 0

1 3/3/2

. = - N 3
Table 3.1: Normalized voltages: 4Bc = v -TVABC) Vabc = V‘?:vabc, Uga = —y_,~Vqd-

denotes a 3-vector of ones. Combining (2.5) with (3.3) yields
ng(t) = 3 (va(0) + 5(2) + v (t) (3.5)
Substituting vy,,(t) from (3.5) into (3.3) results in '
Vabe(t) = Cvac(t) (3.6)

where C is the coupling matrix given by

2 -1 -1
-1 2 -1 ' . (3.7)
-1 -1 2

c

I

Wl =

From (3.6), one can directly compute the motor phase voltages vasc(t) appearing in (2.1) from the
inverter leg voltages vapc(t). ‘

The basic operation of the three-phase inverter can be explained by considering a single inverter leg,
say a. Turning on switch S, and turning off switch S, would establish Vs across terminals a and
g, i.e. v4(t) = Vhus. On the other hand, turning on S,— and turning off S.4 would apply zero voltage
across 21 and g, i.e. v4(t) = 0. Turning on both S,; and S, would short the voltage -bus to ground
and must be avoided by including a dead time in the switching logic. Turning off both S,+ and S,-
would yield v4(t) = Vius if 4a(t) < 0 or v4(t) = 0 if i4(t) > 0, due to conduction of diode D,y or Do-,
respectively. Since each inverter leg can be in either of two states, the three-phase inverter as a whole
can be in any of eight states. Table 3.1 summarizes these eight inverter states, using the relations in
(3.6) and (2.9). Note that six symmetrically distributed nonzero voltage vectors and two zero voltage
vectors can be produced in the gd coordinates.

3.2 Pulse Width Modulation

Since only six nonzero voltage vectors in the gd coordinates can be imposed by the inverter, precise
control is best achieved through PWM strategies. The digital PWM strategy considered in this paper
can be explained with reference to the timing diagram in Fig. 3.2, drawn specifically for phase a (see also
Mohan et al. 1989 and Holtz 1994). The timing diagram, which shows the kth sampling interval of fixed

length T, has two interpretations. In the first interpretation, the rule for determining the ideal switching
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Figure 3.2: PWM switching scheme.

instants is defined by the uppermost plot which displays the triangular carrier waveform v;,;(t) and the
reference waveform u,(t). At the beginning of the sampling interval, u,(t) is sampled and compared to
v4ri(t) to determine time interval Tyx. Of course, vyri(t) need not exist as an analog signal here. In the
second interpretation, the uppermost plot is disregarded and time interval Ty is simply an independent
variable to be chosen later. The result of either interpretation is the logic signal v} (t), defined in terms
of T,x, which represents the ideal shape desired for v4(t).

To avoid the possibility of shorting the voltage bus to ground accidentally, all off-on transitions of the
transistor switches are intentionally delayed by a dead time £3. During the dead time, both switches are
simultaneously turned off. Consequently, the direction of current 7,(t) will determine the actual voltage
v4(t) during the dead time. If i,(t) > 0, diode D,— will conduct and v4(t) = 0 during the dead time. If.
ia(t). < 0, diode Dg4 will conduct and v4(t) = Vius during the dead time. When 4,(t) = 0, an induced
back-emf voltage appears at inverter node a; this isolated open-circuit state will be disregarded. The
actual v4(t) waveforms shown for the two current polarities clearly differ from the v (t) waveform, due
to dead time distortion. , ’

Now that Fig. 3.2 has been described in detail for phase a, it should be clear that the same discussion
extends to the other phases in an obvious way. Considering the entire three-phase system, the inverter

reference signals will be initially issued in the gd coordinates and then transformed into the abc coor-




dinates, at which point the switching intervals for each inverter leg may be obtained. In vector form,
these three sets of signals are
we(f) ug(t) Tk !
Ugd(t) = [ uZ(t) ] Uabe(t) = | us(t) Tabck = | Tox (3.8)
X 'u,c(t) Tex
These vector notations will simplify the analysis‘and modeling results presented below.

The mathematical model of the inverter is most easily derived under the assumptions that the
transistors and diodes are ideal (i.e. that the only source of distortion is the dead time), and that none
of the motor phase currents changes sign within the kth switching cycle. Further simplification will be
enabled by focusing on average voltage values rather than on instantaneous voltage values. To this end,
recall that the average value of any voltage signal v(t) produced during the kth cycle of operation is
defined by

1 [kT+T
= = / o(t) dt (3.9)
T Jir
According to Fig. 3.2, inverter leg voltage v4(t), in the presence of dead time, is modeled by
%us 7kTSt<kT+Tak
3(1 —sgn(iar))Vous » KT +Tak St < kT + Tox + ta
va(t) =4 0 KT+ Top +ta <t < kT +T — Tax (3.10)
11 —sgn(iak))Vous » kT+T —Tax St <kT +T — To + ta
Vous KT+ T —Top +ta <t <kT+T

where tg < Tur < L — t4. Hence, the kth cycle average of inverter leg voltage v4(t) is
2

_ Vius .
Dok = —o (2T o — sgn{iak)ta) (3.11)

T
In fact, since Fig. 3.2 applies to each phase in an obvious way, it is clear that the kth cycle average of

all inverter leg voltages is given by

‘/bus

Bapck = — (2Tabek — sgn(iapek)ta) (3.12)
where )
Sgn(zak)
sgn(iaber) = | sgn(ipk) (3.13)
sgn(ick)

This “open-loop” model for the inverter can be used to determine the effect of various switching strategies,
once a rule for relating the time interval Tgpcx to the reference signal uspcx has been established.

Qne such rule has already been established by the comparator approach depicted in the uppermost
plot of Fig. 3.2. By noting that

nf Wk -1 L KT<t<KkT+3%
veri(£) = { Wina(—L+3) , KT+ T <t<kT+T (3.14)
the time interval Topcr may be computed from ugper by setting

Veri(Tak) = Yok Veri(Tor) = usk  Veri(Ter) = ek (3.15)




which leads to

T (1, | Uabek '
Tabek = 3 (513 + Vi ) (3.16)
Substitution of (3.16) into (3.12) yields
1 , t ’
UABCK = Uabck + '§Vbual3 - Sgn(zabck)vbuafd (3.17)

Under ideal circumstances with tg = 0, (3.17) indicates that each average inverter leg voltage will be
equal to its reference signal offset by one-half of the bus voltage. The dc offset is present because inverter
leg voltages must be between 0 and Vpys, even though motor phase voltages should be between —Vpys
and +Vhys. Note however that if £z # 0, (3.17) indicates that the inverter leg voltages will be distorted
in proportion to Vius 3.

As an alternative, a modified rule for relating Tapcr t0 Uabck can be derived, with the goal of com-
pensating the dead time distortion allowed by the simple comparator approach described above. In
other words, the uppermost plot of Fig. 3.2 is disregarded and T,pcx is understood to be an independent
variable defining the ideal switching instants. Since the goal is to establish (3.17) but without the dead
time perturbation term, one can simply substitute this desired result into the left-hand-side of (3.12)

and solve for Typcx. This procedure, referred to as the inverse approach, results in

_T(1 Uabck . td
Tabok = (213 Y +Sgn(labck)T> (3.18)
Substituting (3.18) into (3.12) yields
1
UABCk = Uabek + §Vbu313 (3.19)

as expected. This modified switching strategy is superior to the simple comparator approach, since even
when tg # 0 the average inverter leg voltages will be equal to the reference signals offset by one-half of
the bus voltage.

The above analysis provides three useful insights. First, it is clear that the comparator approach
cannot.compensate for the distortion caused by dead time. Second, it has been established that the
inverse approach will remove dead time distortion if accurately programmed. Third, the comparator
approach has been shown to be a special case of the inverse approach, corresponding to an assumption
that t; = 0. What remains is to establish a relationship between the motor phase voltages and the
reference signals. For this purpose, note that Clz = 0 and Cugpck = Uaper- The latter identity is due
to the fact that up(t) is a balanced three-phase signal determined from ug4(t); in mathematical terms,
K(0)C = K(6) and CKT(0) = KT (). From (3.17) and (3.6), the comparator approach leads to

R 4
Vabek = Uabck — ngn(zabck)vbus“q% (3.20)
whereas, from (3.19) and (8.6), the inverse approach leads to
Uabck = Uabck ’ (321)

as desired. Hence, the reference signal uab;k is properly interpreted as the desired average value of motor
phase voltage U,pcx. When the comparator approach is used, distortion will generally exist; when the

accurately programmed inverse approach is used, no distortion will be present.




Fig. 3.3 provides an overall view of the digital comparator scheme, for the ideal case when tg4 = 0.
The inverter leg voltages are obtained by comparing a three-phase sinusoidal reference signal to the
triangular carrier signal. The motor phase voltages are derived from the inverter leg voltages, and their
fundamental component voltages are displayed as well. Since 3 =0 in this example, these fundamentzﬂ

components are identical to the reference signals, according to the above analysis.

3.3 Piecewise Linear Inverter Model

Tt is preferable for PWM inverters to have a high switching frequency, in order to reduce switching ripple.
Under such circumstances, a standard averaging approximation may be made; the discrete-level motor
phase voltages vabc(t) may be replaced by a continuous-time representation of their average values ¥abck,
without significantly altering the response of the system. This averaging approximation will be used
throughout the remainder of this paper.

It has been shown in (3.20) that the comparator approach leads to distorted motor phase voltages.
Furthermore, it is important to realize that even the potentially distortionless inverse approach described
in (3.21) cannot be perfectly programmed since this would imply perfect knowledge of T, V4, and .
Although one could argue that T should be accurately known in any digital implementation, the other
parameters pose a greater problem. The bus voltage is expected to drift in response to various loading
conditions, and direct on-line measurement of the bus voltage would require additional interfacing and
greater expense, and would suffer from switching noise error as well. The dead time is not always known,
especially for off-the-shelf inverters. Moreover, the “effective” dead time of an inverter must account
for various switch imperfections and circuit parasitics and thus is not simply equal to an intentionally
implemented time delay. In other words, the voltages in Fig. 3.2 would be time delayed and approximately
trapezoidal rather than square in shape. All off-on transitions are delayed by ¢, and all on-off transitions
are delayed by t.;. These delays are accounted for by replacing ¢4 in (3.12) with

ty =14 +ton — tor (3.22)

.

The rising and falling edges may be approximated by ramps of duration ¢, and i, respectively. This
effect can be accounted for by replacing 4 in (3.12) with

' 1
tg =1+ Z(tr —t) (3.23)

Naturally, the presence of both types of delays is accomodated by combining the additive terms in
(3.22)—(3.23). Therefore, the effective dead time depends on at least five different parameters which may
be unknown. )

A realistic input-output model of the inverter, which accounts for_ all of the above parameter uncer-

tainties, may be expressed in continuous-time by a general piecewise linear function of the form

Vabe(t) = M(Uabe(t) — Oapc(t)d) - (3.24)
where
Tabe(t) = Csgnlianc(t)) . (3.25)
10
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Figure 3.3: Three-phase digital comparator PWM scheme (tq = 0).
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and the constant coeficients m and b depend on various inverter parameters and thus may be unknown.

For example, the inverter models of the previous section can be put into the new format by defining the

slope R )
m= %ZZ: (3.26)

and the intercept X
b=t ;t“ Vous (3.27)

where the “denotes an approximated value used in (3.16) or (3.18).- Although these representations for m
and b hold without modification for the inverse approach, they also hold for the comparator approach if t
is taken to be zero. In these parameter assignments, t4 represents the effective dead time which includes
the contributions due to turn-on delay, turn-off delay, voltage rise time, and voltage fall time. Since
Oabc(t) is determined by the direction of motor phase currents only, it is thus available as a measurement
even when the inverter parameters are unknown.

Note from (3.24)—(3.25) that the average motor phase voltage exhibits jump discontinuities whenever
any phase current reverses direction; this can be expected to occur 6N times per mechanical revolution
if the phase currents are sinusoidal. when the discontinuities are avoided, the input-output relationship
of the inverter is affine. For any fixed t4 — £, the distortion due to effective dead time (i.e. the parameter
mb) increases as switching frequency and/or bus voltage is increased. Even though the numerator of b
may be small, the denominator of b is ideally zero; hence, the ratio b itself may not be negligibly small.

To utilize the piecewise-linear inverter model in control design, it is necessary to transform it into
the gd frame of reference. This can be achieved by multiplying both sides of (3.24) by K(6(t)). The

resulting model in the new frame of reference is
vga(t) = m(uga(t) — 0qa(t)b) (3.28)

where
‘ 0ga(t) = K (0(t))sgn(iase(t)) | (3.29)

The signal 0g4(t), which has constant magnitude and can be directly measured without knowledge of
the unknown coefficients mm and b, is graphically displayed in Fig. 3.4. The six vectors plotted represent
all possible values of 044(t) for a fixed value of 6(t). Each vector is located within one of six conic sectors
identified by dashed lines. Each sector is labeled with ordered permutations of + and —, indicating the
signs of i,(t), i(t) and i.(t), respectively. The actual 0q4(t) is determined from either Z5p.(t) or ga(t).
In the first case, the sector associated with sgn(iapc(t)) is located. In the second case, the sector to
which ig4(t) belongs is located. In both cases, 044(t) is the vector from Fig. 3.4 which is contained in
the identified sector. |

The distortion due to m and b can now be given a geometrical interpretation in the gd coordinates.
Fig. 3.5 (a) shows a reference vector ug4(t) and the six possible values of vector ogq4(t)b, for some
fixed value of 4(t). Fig. 3.5 (b) shows the corresponding six possible voltage vectors v,q4(t) computed
from (3.28)-(3.29). The actual voltage vector v,4(t), which depends on the directions of the motor phase

currents and on rotor position via 6¢4(t), terminates on a circle centered at mug4(t) with radius 2\/%-mb.
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Figure 3.4: Evaluation of 04(t) from iasc(t) or 4ga(t).

Since this circle’s radius is constant, the voltage distortion is largest when the magnitude of ugq4(t) is
small. Fortunately og4(t) is measured, and hence critical directional properties of the voltage error are

known even though the inverter parameters are unknown. -

4 Adaptive Control Design

The coptrol objective is to achieve asymptotic motion tracking with closed-loop stability, despite the
presence of inverter nonlinearities and parameter uncertainty. Adaptive input-output linearization is
used as the basis for control design (see Sastry and Isidori 1989 and Kanellakopoulos et al. 1991). Since
the controller includes on-line parameter estimation, detailed off-line measurements and pre-calibration
are not necessary; moreover, the controller can automatically adjust to slowly drifting parameters. Refer

to Fig. 1.1 for a block diagram of the overall control system.

4.1 Inverter Inverse

R

As indicated in (3.28)—(3.29) and in Fig. 3.5, the inverter is non-ideal in the sense that vg4(t) # uga(t).
However, since the inverter is characterized by an invertible static model, the nonlinearity cancellation
technique of Recker (1993) and Tao and Kokotovic (1996) can be applied. Simpy put, the distortion
introduced by the inverter can be éttenuated by preceding the inverter with a so-called inverter inverse.
If the inverter inverse is properly ca]ibra.t;ed, all non-ideal features of the inverter are cancelled, and

vga(t) will be linearly proportional to the input of the inverter inverse, vg,(t).
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Figure 3.5: Inverter voltage distortion in the gd frame of reference (where r = 2\/—§-mb).

Note from (2.13)—(2.14) and (3.28)—(3.29) that the overall model contains products of inverter pa-
rameters and motor parameter 1/L’. To provide a linear parameterization, (3.28)—(3.29) is rewritten in

the form

%qu(t) = ¥n1uga(t) — 9r2044(t) (4.1)

where

m mi T
Ir=[% = (4.2)

is the vector of unknown inverter-dependent parameters. The adaptive inverter inverse is defined as
ga(t) = F72(0) (v5a(t) +F12(B)aa(®)) (43)

where v7,(t) is the inverter inverse input and where B1(t) represents the estimated value of 9J;.
The relationship between the inverter inverse input v},(t) and the inverter output.voltage vgd(t) is
1 -
qud(t) = vy4(t) + w(t)I:(2) (4.4)

where

w0=[10 ][ 26 56 “
and where 9;(t) = 9;(t) — 91 denotes parameter estimation error.

Note that w(t) depends only on 044(t) and u,4(t), and can thus be computed without knowledge of
I and without measurement of vga(t). In the ideal case where 9 1(t) = 9y for all t > 0, the inverter

output voltage obeys frvga(t) = v}4(t).

4.2 Estimated Normal Form

The complete model of the ac motor drive, which includes the motor and load dynamics (2.11)-(2.14)

as well as the cascade combination of the inverter inverse and the inverter (4.4), is given by

0t) = w(t) ~ (4.6)
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d)(t) = —19L1w(t) + N1.9L2iq(t) : (4.7)
i) = =N +ia(t))w(t) — Imaig(t) +v] () +wg(t)91(t) (4.8)
ia(t) = Nig(w(t) — Inaialt) + v3(t) +wa()9s(t) (4.9)
where the vector of unknown motor-dependent parameters is
' T
= | 2
ou=|% & ] (4.10)
and the vector of unknown load-dependent parameters is
r
— Al
By = [ B A ] (4.11)

Since two inputs~ are present in v;‘d (t), two outputs shall be selected at this stage; the mechanical output
6(t) is of greatest interest for motion control applications, whereas the electrical output i4(t) is chosen
to provide some control of flux (a secondary concern). With this choice of outputs and with parameter
uncertainty neglected, it is easily verified that this ac motor drive system has global relative degree
{3, 1}, since the determinant of the decoupling matrix is Nz # 0.

To prepare for adaptive input-output linearization, consider the estimated acceleration defined by
a(t) = =91 (t)w(t) + NOL2(t)i,(t) (4.12)

where 91,(t) is the estimated value of 9. As shown in Kanellakopoulos et al. (1991), since all unknown
parameters of the motor drive system are separated from the control inputs by no more than one
integration, a change of variables from g¢-axis current to estimated acceleration will lead to certain
advantages. In contrast, note that a change of variables from g-axis current to true acceleration (as
suggested in Sastry and Isidori 1989) would instead lead to overparameterization and other disadvantages.

Using the change of variables suggested above, i.e. replacing g-axis current with estimated accelera-

tion, the ac motor drive model is transformed into the estimated normal form

i) = w) ' (4.13)
O(t) = oft) +w(t)BL1(t) — Nig(t)ILa(t) (4.14)
&(t) = fo(t) + NOLa()v}(t) + NOLa(thw, (1)1 (2) (4.15)
ia(t) = fa(t) +v3(t) +wa()ds(t) (4.16)

where 3(t) = 91 (t) — 9L represents parameter estimation error and

fo®) = (—51,1 () +BL1 ()91 — N?Bpo(t)(Oans +da (t))) w(t)
: +N ({§L2 (t) = D12 ()12 — 1§L2(t)19M2) ig(2) (4.17)
fat) = Nig(t)w(t) — dsialt) (4.18)

Note that if one neglects parameter estimation errors, this new model possesses a special structure. The
mechanical output O(t) is separated from control input v;(t) by a chain of three integrators, with all
nonlinearities located in the v}(t) equatioh. The electrical output i4(t) is separaﬁed from control input
v3(t) by one integrator, with all nonlinearities located in the v}(t) equation. Consequently, cancellation

of all nonlinearities, with mechanical-electrical decoupling, will be possible by proper choice of V4 (®).
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4.3 Motion Controller

The motion controller is derived by applying input-output linearization after replacing all unknown
parameters in the estimated normal form by their estimated values, yielding

via(t) = [ Négg(t) 2]_1([ :28 ] +A(t)) (4.19)

where
) = (=3n) +9u0In® - NBa®)Bm (@) + i) w(2)
+N (i@m (t) = 14 (B022(t) — Pra(tyrra(®)) ia (1) (4.20)
fa®) = Nig(t)w(t) — dma(t)ia(t) (4.21)

and where A(t) represents a linear error feedback. In (4.20)-(4.21), D (t) is the estimated value of
95 and, as usual, Op(t) = dr(t) — Opr will denote the corresponding parameter estimation error.
Implementation of (4.20)-(4.21) will be achieved by replacing the terms b r1(t) and B L2(t) by the right-
hand-sides of the corresponding update laws to be determined in the next section.

For position tracking control, with desired position trajectory 60.(t) and desired current trajectory

i4.(t), the outer feedback loop is given by

Ap) = | ~Coreer (t) — cozesa(t) — ?f)ees(t) +6(2) (4.22)
—cosepa(t) +1g, (t)
where the error vector is
o(t) — 6 (1)
w(t) — 0 (t)
a(t) — 62 t)
ia(t) — 150 (1)

and where the feedback gains are chosen such that s + coss? + cg25 + co1 and s + cs4 are Hurwitz

" ep(t) = (4:23)

polynornials. The closed-loop error dynamics are

ég (t) = Ageg(t) + Wg(t)'lé(t) (4.24)
where
0 1 0 0
A = —'(C)ol —292 -—ies g (4.25)
. 0 0 0 —cos
We(t) = [ Wer(t) Wem(t) Wer(t) ] (4.26)
30 = [¥@ 950 o] (4.27)
The regressor submatrices are defined by
0 0
W, = 0 0 4.28
1) = | Nda(t)ugt) Nora(t)og(t) (4.28)
—uq(t) 0a(t)
16




Wem (t)

We L(t)

At) =

where the error vector is

The closed-loop error dynamics are

where

Au

W (t)
B(t)

The regressor submatrices are defined by

WwI(t)

WwM (t)

WwL(t)

t

i4.(t), the outer feedback loop is given by

| —ewrew (t) — cwzews(t) +w®(t)

eu(t) =

é(t) = Ae(t) + W(t)5(t)

0 0
0 0
Nz’l;{,g(t)w(t) N&Lg(t)iq (t) (4.29)
0 id(t)
0 0
w(t) _Niq(t) (430)

—Dpa(t)w(t) Nra(t)ig(t)
0 0

For velocity tracking control, with desired velocity trajectory w,(t) and desired current trajectory

—cuseus(t) + 550 (t) (4.31)
w(t) — w0 (t)
a(t) - () (4.32)

ia(t) — i) (t)

and where the feedback gains are chosen such that 824+ ¢u28+ ¢y and s+ ¢,3 are Hurwitz polynomials.

éu(t) = Auveu(t) + Wo(2)9(t) (4.33)
0 1 0
I: —Cw1 —Cw2 0 ] (4'34)
0 0 —cus :
[ Wor(t) Wom(t) War(t) ] (4.35)
BRI ACEE (4.36)
0 0
— NI La(t)uy(t) NﬁLg(t)aq(t)] (4.37)
-—ud(t) O‘d(t)
0 0
N p,(tw(t) N"9L2(t)iq(t)] (4.38)
0 ig(t)
w(t) —Nig(t)
—B1()w(t) Nﬂm(()t)z'q(t) (4.39)
0

4.4 Parameter Adaptation and Stability Analysis

As shown above, the combined effect of the nonlinearity cancellation loop and the pole placement loop

is to achieve closed-loop error dynamics governed by

(4.40)
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where A, e(t), and W (t) depend on the control objective. Although J(t) is an unknown perturbation to
the error dynamics, both e(t) and W (t) may be computed from directly measured signals. Now consider

the Lyapunov function candidate
V(t) = €7 (t)Pe(t) + 5T ()T 1H(t) (4.41)

where T is a positive-definite symmetric adaptive gain matrix and P is the positive-definite symmetric

matrix which solves the Lyapunov equation
ATP+PA=-Q (4.42)

given any positive-definite symmetric matrix Q. Time differentiating both sides of (4.41) gives

V(1) = —eT(t)Qe(t) + 257 (2) (r-lé(t) +WT(t)Pet)) (4.43)
Selecting the parameter update law . |
B(t) = —TWT (t)Pe(t) (4.44)
reduces (4.43) to
V(t) = —eT(t)Qe(t) <0 (4.45)

Even though the update law (4.44) guarantees that V(t) is non-increasing, it may lead to another
problem. Specifically, note that the possibility of division by zero exists in both the inverter inverse (4.3)
and in the motion controller (4.19). However, under the reasonable assumption that positive constants

99, and 93, are known such that ,
On>9  Br2 >0, (4.46)

it is possible to use projection on (4.44) in order to guarantee that division by zero will not occur while
also guaranteeing that V(t) < 0 continues to hold (see Ioannou and Sun 1996).

In summary, the complete adaptive control system consists of the adaptive inverter inverse (4.3),
the adéaptive inner-loop of the motion controller (4.19), the adaptive outer-loop of the motion controller
(4.22) or (4.31), and the parameter update law (4.44) modified by projection. A Lyapunov function
V (¢) satisfying V(t) < 0 has been found, which g:uarantees that tracking error e(t) and parameter error
z§(t) are bounded and confined to a closed ellipsoidal region in the error space. Application of Barbalat’s
Lemma (see Ioannou and Sun 1996) allows the further conclusion that e(t) — 0 as t — oo, i.e. that
the tracking error converges to zero asymptotically. The boundedness of all signals in the closed-loop
system, as well as the asymptotic tracking capability, are guaranteed for all bounded initial conditions
and 'all bounded reference trajectories.

There are several special cases for which the adaptive control system simplifies. For example, if any
parameter vector ¥y, ¥ar, or ¥1, is known a priori, then this known vector does not need to be estimated
on-line. Instead, one would simply plug the known vector into the adaptive inverter inverse or adaptive
motion controller as necessary, and the corresponding update law would be disregarded. This concept

becomes particularly clear when the parameter update laws are expressed in the component form

Bi(t) = ~TiWF(t)Pe(t) : (4.47)
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du(t) = -TuWh(E)Pe(t) (4.48)
Su(t) = —-TLWI(t)Pe(t) (4.49)

i

where regressors Wj(t), Was(t) and W, (t) are defined in (4.28)(4.30) or (4.37)~(4.39) depending on the

control objective.

5 Simulation Results

A computer simulation was performed to support the results pr@énted in this paper. All parameters of
the inverter-motor-load combination are assumed to be unknown, and the control objective is velocity
tracking. The inverter parameters are: m = 0.8 (unitless) and b = 3 V. The motor and load parameters
are: B = 0.0005 kg-m?/s, J = 0.0001 kg-m? R =34 Q, L' =05 H, A, = 0.0827 Wb and N = 2.

Hence,

9 = [16 48]
9y = [0165 68]"
o, = [5 827"

The initial parameter estimates are chosen to be

5,00 = [18 0]"
du(0) = [0149 612"
d0) = [65 5789 ]

This choice corresponds to assuming an ideal inverter, motor parameters within 10% and load parameters

within 30% of their true values. The gains are chosen to be

¢ = [—40 -22 -15]"
179 -3 0
P = -3 5591 0
0 0 02
I = diag{3x107% 3x107%, 2x107°, 1.2 1073, 7x 107%, 0.5}

and the projection parameters are selected to be
1 1
8, =9 99,==9
® n=sj 11 L2 3 L2

Although not necessary, projection was also used‘ on all other parameter estimates to keep them positive;
this option enhances parameter convergence. During the first 2 seconds, no parameter adaptation is
performed and the controller uses the fixed initial parameter estimates.

As shown in Figs. 5.1-5.6, the motor is commanded to track the velocity trajectory

w, (t) = 50cos(2mt)
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Figure 5.1: Speed and speed error.

This trajectory can be tracked by the example motor without requiring large voltage magnitudes, because
both the friction torque and the acceleration torque are telatively small; hence, the voltage distortion
introduced by the inverter can be expected to have a significant influence on the overall system response.
Direct-axis current is commanded to be constant at 0.

During the first 2 seconds when adaptation is disabled, a large speed tracking error persists and
the inverter output voltage exhibits significant jump discontinuities. If fact, voltage discontinuities may
be expected to occur roughly 12 times per second, for the uncompensated inverter, due to the choice
of motion trajectory. After about 1 second of adaptation, the voltage errors are reduced to near zero
and the voltage discontinuities are essentially eliminated; furthermore, the motor and load parameter
estimates have begun to approach steady-state values. Consequently, the velocity response becomes
nearly linear after this 1 second of adaptation, and the velocity tracking error is reduced essentially to
zero after several more seconds of operation. Note that the parameter estimation error also converges
to zero in this simulation.

IS

6 Conclusion

This paper has presented a new state-feedback adaptive motion control scheme for inverter-fed ac motor
drives. Inverter output voltage measurements are not required. The model on which the control scheme
is based includes various inverter nonlineéritim, the electromechanical dynamics of the motor, and the
mechanical load. The control scheme guarantees global stability, and provides asymptotic motion track-

ing, even when none of the parameters of the inverter-motor-load combination are known. At most six
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parameters need to be estimated on-line; fewer will suffice given a priori parameter knowledge.
Although the inverter switching logic outlined in this paper considers only two possibilities, it is
not difficult to show that the proposed pieoewise—linear inverter model pertains equally well to other
switching schemes such as spacé—vector modulation. When the proposed linearization-based motion
controller is extended to other types of ac motors, the only complication that may arise is a decoupling
matrix dependence on current or flux in addition to parameter estimates. In such a case, parameter
projection aloﬁe cannot guarantee nonsingularity of the decoupling matrix. Consequently, the stability
region becomes local rather than global, since initial conditions must be restricted to an ellipsoidal region

of the error space in ordeér to guarantee that the adaptive system will not encounter any singularity.
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1 Continuous-Time System Description

This paper considers PWM systems as described by

. Asz(t) + Biu(t) , teT;

2(t) { A;:z:(t) + B;u(t) , tE€ T; (1.1)
Ciz(t) ,teTy

y(®) { Cosl) . teTo

where.u € R™ is the input vector, z € R™ is the state vector, and y € R? is the output vector.
The system switches between two topologies, (A1, By, C1) and (Ag, By, C5), with switching

instants determined by

N-1

T = |J (kN +n)T, (kN +n)T + dT) (1.3)

n=0

N-1

T = |J (kN +n)T+dT, (kN +n)T +T) (1.4)

v n=0

where T is the switch period, NT is the control period, di € [0,1] is the switch duty ratio, and k
is the discrete-time index. The block diagram representation of system (1.1)—(1.2) is displayed
in Fig. 1.1, and the switching function defined by (1.3)—(1.4) is illustrated in Fig. 1.2. Note that

*This work was supported in part by the National Science Foundation under grant ECS-9158037, by the
Office of Naval Research under grant N00014-96-1-0926, and by a graduate fellowship funded through King Saud

University of Riyadh, Saudi Arabia.
tAll correspondence should be addressed to this author.
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Figure 1.2: Switching function for N = 2.

the switch maintains a constant duty ratio throughout each control cycle; duty ratio updates
occur every Nth switch cycle. Ideally N = 1, but it is sometimes necessary to choose N > 1 so
that fast switching may be achieved despite potentially slow control computation. All auxiliary
inputs will be assumed to be piecewise-constant, i.e. u(t) = ui for all t € [kNT, (k + 1)NT).

The continuous-time output signal y(¢) contains switching ripple. A related signal which is
more appropriate for control design is the one-cycle-average output, defined by

1 t
*t) = — / 7) dr 1.5
v =57 [, v (15)
The averaging interval is set to NT, since the switch operates with constant duty ratio over
intervals of length NT.
2 ‘Discrete-Time Large-Signal Model

It is desired to compute, without approximation, the evolution of all system variables at the
sampling instants, t = kNT. Since the state and output equations (1.1)~(1.2) are piecewise-
linear with respect to time ¢, the desired discrete-time model .can be obtained symbolically.
Using the notations z := z(kNT) and yi := y*(kNT), the result is

Tyl = A(dk)xk-i-B(dk)uk ) (2.1)




b}

Il BN B B B N BN BD B B B TN BB B B O s

Yir1 = C(di)zr + D(di)ur (2.2)

where the input nonlinearities A(d), B(d), C(d) and D(d) are given by

Ald) = A@N , (2.3)
N '
B(d) := ZAl(d)f-lzsl(d) (2.4)
1;1 N |
C(d) := N(ch(d)Al(d)"l) , (2.5)
=1
N-1 ’
D(d) := _]]\:/: (N'Dl(d) + Z(N —i)cl(d)Al(d)i_lBl(d)> (2.6)
=1

where A;(d), Bi(d), C1(d) and D;(d) denote the input nonlinearities specialized to the case of
N = 1. These latter functions are in turn defined by

= ®((1 — d)T)®;1(dT) | (2.7)

Ai(d)
Bi(d) := ®((1-d)T)'1(dT)+2((1—-4d)T) (2.8)
Ci(d) = C1®1(dT) + C2®3((1 — d)T):1(dT) (2.9)
Dy(d) = CiI(dT) +C2 (B5(1 —d)T)I(dT) +T5((1-d)T))  (2.10)
where
d;(t) = eAd (2.11)
Li(t) := /OteA"’Bi dr (2.12)
B0 = 5 [ 8 ar (213)
Ti(t) = % AtFi(T) dr | (2.14)

The large-signal model (2.1)-(2.2), which provides the cycle-to-cycle trajectory for the one-
cycle-average value of any signal in the PWM system, is reported here for the first time.-

Note that the averaging operation adds “sensor” dynamics to the system; as a consequence,
the large-signal model (2.1)-(2.2) is not in standard state-space form. By defining the aug-
mented state vector z* € R™*P such that

>

* Tk
Ty = ,
k C(dk—l)xk—l + D(dk—l)uk—l (2'15)
an equivalent representation of the large-signal model is given by
Zia = A(d)h+ B (du | (2.16)
% = C'j 2.17)
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where
R e 229
B*d) = S%J» ~ (2.19)
C* = | Opxn Ipxp | (2.20)

State feedback control design for this system will generally require not only measurement of
the circuit’s state, but also computation of the sensor’s state from nonlinear functions C(d) and
D(d) and available signals. )

To illustrate the advantages of the new one-cycle-average large-signal model, consider the
following example. Simulations of buck, boost and buck-boost converters are shown in Fig.
2.1, using three different simulation models. The first simulations use the continuous-time
model (1.1)-(1.2) to obtain continuous-time outputs y(t); the results are shown by the solid-
line ripple waveforms. The second simulations use the new discrete-time model (2.16)-(2.17)
to obtain discrete-time outputs yz; the results are identified by the triangles. The third simula-
tions use the traditional discrete-time model (not explicitly shown here) to obtain un-averaged
discrete-time outputs yx := y(kNT); the results are identified by the circles. Note that the
traditional discrete-time model returns sample values of the continuous-time output waveform
which, unfortunately, may correspond to the peak, valley, or some intermediate point of the
ripple waveform. In contrast, the new discrete-time model does not return sample values of
the continuous-time output waveform, but rather sample values of the continuous-time one-

cycle-average output waveform. Hence, the new discrete-time model provides the most useful

representation of the PWM system’s response.
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Figure 2.1: Comparison of model responses.
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POLYMER CURRENT LIMITERS FOR
LOW-VOLTAGE POWER DISTRIBUTION SYSTEMS'

Mark H. McKinney, Charles W. Brice, and Roger A. Dougal
Department of Electrical and Computer Engineering
University of South Carolina

Abstract—Low-voltage power distribution systems are
often protected from overcurrent conditions by fuses,
low-voltage power circuit breakers, and molded-case
circuit breakers. As changes are made to the power
distribution system, the short-circuit duty imposed on
the switchgear often increases. This increased short
circuit duty may necessitate the replacement of many
of the devices in the system, including the circuit
breaker if the rating of the breaker is exceeded. One
approach to avoiding the replacement of over-dutied
switchgear is to use a current limiter to decrease the
short-circuit current. This paper discusses the use of
polymer current limiters for the protection of over-
dutied circuit breakers. Polymer current limiters are
widely used in appliances, electronic power supplies
and other low-power applications. Power distribution
applications of polymer current limiters and
simulation results showing potential problems and
approaches to their solutions are given. We will begin
with an introduction to the functional properties of
polymer current limiters, then describe how those
properties drive the selection of associated components
such as a shunt link and the molded case circuit
breaker. Finally, we will describe applications of the
PCL in a hierarchic low voltage power distribution
structure. Particular emphasis is placed on methods
for tailoring the time-current curve to achieve
coordination with low-voltage circuit breaker
characteristics.

I. INTRODUCTION

Any material with a sufficiently strong positive
temperature coefficient of resistivity can be used to
make a current limiting device. For this class of
devices, the insertion loss is small because the
resistance is low when conducting rated current.
During fault conditions, however, the increased
current causes ohmic heating which raises the
temperature of the element and hence its resistivity
(i.e., the material forms a thermistor). A positive
feedback situation ensues, causing recursive heating
and resistance increase, thus ensuring that the peak
fault current is substantially limited. Current
limiting fuses operate on this principle. We consider
in this paper the use of a polymer current limiter

(PCL) in a power system application, and describe
how the specifications for the PCL must be carefully
coordinated with those of two other necessary
elements, the shunt link and the circuit breaker.

Polymer current limiters are fabricated from a
polymer material (e.g., polyethylene) filled with
conducting particles (e.g., carbon black) to the point
that the conducting particles become contiguous,
forming conducting chains throughout the material.
These polymer conductors generally have positive
temperature coefficients (PTC) of resistance that are
especially large near phase transitions of the polymer
{11,[2]. This is illustrated in Fig 1 which shows the
graph of resistivity as a function of temperature for a
common carbon-filled polyethylene thermistor. The
dramatic increase in resistivity near 130°C is caused
by polymer expansion at the phase transition
(corresponding to melting) which breaks the
conducting chains and isolates the individual carbon
black particles. Crosslinking of the polymer
conveniently prevents liquefication, so even when
the polymer is heated above its melting point, its
physical characteristics are preserved [3].
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Figure 1 Typical resistivity vs. Temperature for a polyethylene
and carbon black polymer current limiter.

PTC thermistors of this type are widely used as the
sole device for current limiting in low-power
applications such as automotive or telephonic
systems [4},[5],[6]. Their properties of self-recovery
and rapid response to excessive currents are
particularly appealing in these situations. Those

!This research was sponsored by the Naval Surface Warfare Center, Annapolis, MD and by the Office of Naval Research.




same properties make them attractive for
applications in low-voltage power distribution
systems as was discussed in a previous paper [7]. But
when used in a system with relatively high available
power, a polymer current limiter is not, by itself, a
suitable circuit protection device. Rather, it must be
used in conjunction with another element such as a
circuit breaker, to effect a total disconnect of a faulty
circuit branch. The switching properties of the PCL
and of the circuit breaker are not mutually
compatible, though, so a third element, a shunt link,
must also be used.

The necessity of the shunt link can be understood
by considering the switching properties of the PCL.
First, due to the rapid response time of the PCL, it
can open before the appropriate circuit breaker trips,
leaving only the PCL to absorb all of the energy of
the fault. Second, if the system current is abruptly
quenched, a large inductive voltage spike appears
across the PCL for a significant time, imposing an
excessively large peak power and peak electric field
on the PCL. The shunt link effectively decreases the
dl/dt requirement and hence the peak power and
field requirements. In a sense, the shunt link is a
rugged device into which the necessary system
energy can be gracefully deposited. The combined
system has a configuration as shown in Fig 2.
Design of the collective system is somewhat
complicated; since both the polymer current limiter
and the shunt resistor must be specified so as to
properly coordinate with the circuit breaker. For a
detailed description of the design of the shunt link
see Ref. 8.

)
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Shunt Link

Figure 2 Polymer current limiter with a shunt link

This paper discusses coordination and
specification issues that must be addressed in order
to properly apply polymer current limiters in low-
voltage power distribution systems. In particular:

o Prevention of thermal damage to the PCL during
heavy short circuits

e Management of pre-heating due to load currents
and high ambient temperatures

e Coordination with other devices including circuit
breakers, fuses, transformer damage curves and
motor starting inrush currents.

Solutions to these problems are demonstrated by
means of detailed simulations of the polymer current
limiter behavior [8]. We show that thermal damage
may be avoided by specification of a proper shunt
link, and that the shape of the time-current curve of
the PCL may be controlled by proper selection based
on cross-sectional area, electrode mass, and thermal
conductivity of the composite material. For a variety
of reasons, including simplicity of the presentation of
results and the fact that the switching action of a
PCL occurs on a time scale short compared to a 60
Hz cycle, all results presented in this paper are
derived by using a DC power system model with
circuit breaker curves adjusted accordingly [9].

II. MATHEMATICAL SIMULATIONS

Two models were used to obtain the data presented
in this paper. The time-current curves were obtained
by modeling the PCL-electrode system as a thermal
circuit as shown in figure 3. The power dissipated in
the polymer is represented by the current source on’
the left, and the ambient temperature is represented
by the source on the right. Cgy, and Ry are the heat
capacity and thermal resistance, respectively, of the
electrode attached to PCL. The time to switch was
defined as the time required for the temperature of
the polymer to reach 120°C as once the temperature
reaches this point, switching is eminent.

This model was confirmed by a more complex
finite element model. This model has correlated
favorably with existing device measurements and
includes a sophisticated analysis of many electro-
thermal properties and characteristics of the PCL
material. This model was used to determine all
internal temperatures, currents, and energies relating
to the PCL and its switching action in an actual
power distribution system. For a more detailed
description of this model, readers are directed to [8].

Figure 3 Thermal model of PCL/Electrode system
III. ENERGY ABSORPTION LIMITS OF PCL

Self-recovery is an important advantage of
polymer current limiters, but the ability for self-




recovery is dependent on limiting PCL energy
absorption during a system fault. Energy absorption
during a fault was investigated using the simple
circuit shown in figure 4. A 0.4 mm thick carbon
black/polyethylene PCL device with a cross sectional
area of 10 cm? a low temperature resistance of
12mQ and a high temperature resistance of 400k

was used.

Figure 5 shows the system current following
closure of the short circuit. The system current rose
initially at a rate limited by the system inductance,
then, once the PCL switched, precipitously decreased
to near zero in less than a millisecond. The abrupt
current interruption resulted in a large inductive
voltage across the PCL. The internal temperatures of
the polymer exceeded 500°C in a matter of
milliseconds, while the device absorbed 450 J of
energy. This temperature lies beyond both the
functional limits of the polyethylene polymer and
range of validity of the model. This clearly indicates
an unacceptably large energy absorption in the PCL.
Energy absorption can be constrained to lie within
the limits of the PCL by placing a low value resistor
in parallel with the PCL, as shown in Figure 6.

PCL
L-line=50uH j'\/\_ﬁ
RLine=5mQ
Rfault=0.001 Rload=4Q

Vsource=400V

U

Figure 4 Simple power distribution system utilizing PCL

4.0

1P (kA)

Figure 5 Current through PCL without shunt link

Incorporating the shunt link into the numerical
simulation, we find that the internal temperatures
never substantially exceeded the melting point of

polyethylene (125 °C) and the energy dissipated in
the PCL was a manageable 50 J. In this
configuration, the PCL commutates the current into
the shunt link reducing the amount of energy that
the PCL itself must absorb. This system does not
stop the flow of current entirely, but limits the let-
through current to a value determined by the shunt
link, in this case, 2 kA. This current is sufficient to
trip the circuit breaker without damaging it. The
tradeoff for using the shunt link is that the higher
let-through current requires that the shunt link have
a large energy dissipation rating.

PCL with
Shunt Resistor

L-line=50uH

RLine=5m£
Rfault=0.001 Rload=4Q

Vsource=400V

Figure 6 Simple power distribution system utilizing a PCL and a
shunt link.

Specification of the correct shunt link is somewhat
complicated. One desires to have a small resistance
so that current is most effectively commutated into it
from the PCL. On the other hand, the smaller the
shunt resistance, the larger the energy absorption
requirement for the link. In the end, the resistance of
the shunt resistor depends mostly on ensuring
coordination between hierarchic levels of circuit
breakers. Then the energy absorption rating of the
resistor is determined by the time between the
switching of the PCL and the circuit breaker.

IV. ENVIRONMENTAL CONSIDERATIONS

The switching action of a PCL depends on its
temperature so it is inevitable that the ambient
conditions will affect its performance. The two most
important environmental factors are the ambient
temperature and the circuit load. Both of these
factors can change the internal temperature of the
device, and thus increase or decrease the response
time of the PCL..

The response time is essentially the time required
to heat the PCL from its equilibrium temperature to
the switching temperature. The melting point of
polyethylene is near 120°C so the maximum
allowable operating temperature must lie well below
this point. Bach degree of change in the operating
temperature results in a corresponding change in the
response time. Figure 7a shows how the switching
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times of a polyethylene PCL vary as the ambient
temperature ranges from 0°C up to 75°C, its useful
operating range.
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Figure 7a Variation of trip time with increasing ambient
temperature for a PCL with a melting temperature of 120.°C.

Figure 7b shows the effect of changing the initial
load current. While this does not have nearly as
dramatic of an effect on the switching time of the
device, it nonetheless can be a significant factor in
determining the switching characteristics of a PCL
device.
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Figure 7b Variation of trip time with increasing load current for
a PCL with a melting temperature of 120.°C.

As can be seen from these figures, lower internal
temperatures, caused by either low load currents or
low ambient temperatures, lead to slower switching
times - as would be expected. This can result in loss
of switching coordination allowing a fault current to
reach levels higher than the breaker can safely
interrupt. Conversely, if either load currents or
ambient temperatures are too high, the internal
temperature of the device is higher, causing the
switching action to occur more rapidly, thereby
again losing coordination with the circuit breaker.

The ability to extract heat from the device is
important; in particular the nature of the electrode /

PCL contact is critical. This junction can be a

1 10 100

significant barrier to heat flow because of void
spaces in the contact area due to surface roughness.
The effectiveness of this contact can be quantified by
the thermal contact coefficient, and is given by

1 (A, 2kky A ( w )
LT BN ,

© L\ Akg+k, A m*°C

where L, is the thickness of the void spaces, A, is the
contact area, A, is the void space area, A is the total
cross-sectional area, and kg, kp and kp are the
thermal conductivities of the electrode, polymer, and
fluid filling the voids, respectively. By increasing
the pressure of the contact and/or minimizing
surface roughness, L, is minimized and the contact
area is maximized. Additionally, if a fluid with a
higher thermal conductivity than air is used to fill
the void spaces, h, will be maximized, thus allowing
the device to remain cooler.

The primary loss of coordination is brought about
by the fact that the melting temperatures of most
polymers are fairly close to the 75°C maximum
operating temperature. Because the low-resistivity
portion of the p vs. T graph (figurel) is not flat, and
in fact increases in slope as the temperature
approaches the melting point, a positive feedback
situation can arise causing premature switching of
the device. The simplest solution to this premature
switching is to use a material that has a higher
melting point, thus making a 75°C swing in
operating temperatures a less significant portion of
the materials’ low-resistivity state. Figures 8a and
8b show the responses of a device fabricated from a
composite with a melting temperature of 150°C,
30°C above that of polyethylene. Although the
graphs are similar to those in figure 7, upon close
examination, it can be seen that the effects of
ambient temperature and load currents are
ameliorated to some extent, but the switch takes
longer to react, resulting in larger peak currents.

V. MODIFYING TIME-TO-TRIP CURVES

When used in an electrical distribution system,
PCLs in series with circuit breakers may serve at
least two purposes. As mentioned above, the PCL
can limit the peak fault current to a value that the
circuit breaker can safely interrupt as well as
ensuring coordination between branch and feeder
circuit breakers. Coordination is defined as an
isolation of a fault at the lowest possible level of a
hierarchic switching structure. Satisfying both of
these purposes simultaneously presents many
challenges.




Figure 9 shows the trip time characteristics for a
typical branch circuit breaker and trip times of a
feeder circuit breaker normalized to the rating of the
branch circuit breaker . Both circuit breakers have
complicated time-current curves, which can be
divided into three zones: a long delay zone, a short
delay zone, and an instantaneous trip zone (LT-ST-
IT). While some circuit beakers have simpler
switching characteristics involving only long delay
and instantaneous zones (LT-IT), it will be clear that
coordination with LT-ST-IT circuit breakers is the
more challenging prospect. Long time delays are
programmed into the breaker trip-time curve to
prevent tripping during transient overcurrent
situations such as those encountered when starting a
motor. These long delays especially complicate the
coordination problem between the circuit breakers
and the PCL.
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Figure 8a Variation of trip time with increasing ambient

temperature for a PCL with a melting temperature of 150.°C.

10000
1000 Lood sumentolo0n —
100
10
= 1
g 0.1
- 0.01
0.001
0.0001
1e-05 .
1 10 100

. per unit current
Figure 8b Variation of trip time with increasing load current for
a PCL with a melting temperature of 150.°C.

Above 10x rated current, most circuit breakers
operate in the instantaneous trip mode to rapidly
isolate short circuit faults. The maximum
instantaneous fault current that can flow in any
system depends on the system inductance and the
system voltage. In many applications, the system
inductance is so low that fault currents can exceed

the instantaneous trip current by a substantial
margin even before the circuit breaker mechanism
can be actuated. In this case, two things may happen:
the circuit breaker may fail to interrupt the current if
the peak current exceeds the peak interruption rating
of the breaker; or both circuit breakers (the feeder
and the branch) may trip. The latter condition
represents a loss of coordination between the circuit
breakers which results in the undesirable condition
of trouble-free circuits energized by the same feeder
circuit being left without power.
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Figure 9 Typical time-current curves for branch and feeder
circuit breakers

Shown in figure 10 is a typical graph of time to
switch for a PCL superimposed over the graphs for
typical branch and feeder circuit breakers from
figure 9. Note that when the CB operates in the long
delay stage (~1.5-5 times rated current), the PCL
will switch in a fraction of the time of the CB. This
causes two complications. First, the PCL (or its
shunt resistor) could absorb an excessive amount of
energy and become damaged before the circuit
breaker could trip. Second, due to the large time
delay between the switching action of the PCL-and
the CB, the advantage of having a delay built into
the circuit breaker is lost.

It is important to note that at low to moderate
overcurrents it is advantageous for the PCL to switch
slower than the branch circuit breaker in order to
allow short -duration over-currents, At high
overcurrents, however, it is important for the PCL to
switch faster than the feeder circuit breaker but
slower than the branch circuit breakers in order to
achieve the desired current limiting action without
causing undesired switching of other circuits feeding
off of the same circuit breaker.

At extremely high overcurrents, the switch-time of
the PCL is essentially irrelevant for the portion of
the curve which lies below the maximum di/dt as
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moderated by the system voltage and inductance.
This is shown in figure 10 and is described by the
equation:

di_ v
dt L,
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Figure 10 Comparison of PCL time-current curve with circuit
breaker curves showing poor coordination.

Utilizing the thermal model of the polymer,
certain critical parameters were determined to alter
the shape of the PCL curve to better match that of
the circuit breaker. These parameters can be altered
within the limitations of the manufacturing
technology to allow a PCL to be developed to match
a great number of systems.

A. Cross Sectional Area Variations

As a first approach, the simplest way to keep the
PCL curve to the right of the branch circuit breaker
is to increase the cross-sectional area of the PCL.
Time vs. overcurrent curves are shown in figure 11
for several different PCLs, each with a different
cross-sectional area. As can be seen, larger cross-
sectional areas shift the entire curve to the right.
Although the knee in the graph flattens slightly with
larger areas, very little useful change in the shape of
the curve is achieved. Using this approach, the PCL
could be made large enough to prevent switching
during the long-delay section of the branch circuit
breaker. There are two problems with this approach,
however® First, the device is now offering no
protection below its new, higher threshold value. In
essence, all that has been done, is that a higher rated
device has been substituted for a lower rated one.
Second, this is not an acceptable solution with
regards to the feeder circuit. In order to prevent the
feeder circuit breaker from tripping, the long delay
portion of the PCL curve needs to lie to the left of the
feeder circuit breaker curve. This is not possible in

many systems by simply changing the area of the
device as the long delay section of the circuit breaker
and PCL curves would cross. It is evident then that
the knee of the PCL curve needs to be altered in
order to get ideal coordination between the PCL and
the circuit breakers.

B. Electrode Mass Variations

By increasing the mass of the electrode attached to
the PCL, the time constant associated with the heat
capacity and thermal contact resistance is altered,
moving the top inflection point of the knee to higher
values, as shown in figure 12.
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Figure 11 Variation of trip time for various cross sectional areas.
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Figure 12 Variation of trip time for various electrode masses.

At the two extremes, i.e. for a massless electrode
or for an electrode of infinite mass, there would be
only one inflection point and no knee in the graph.

C. Thermal Conductivity Variations

The locations of the vertical asymptotes
corresponding to the limiting cases are independent
of the mass of the electrode but can be altered by
varying the thermal conductivity of the polymer
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material itself. This effect is clearly shown in figure
13.

As the thermal conductivity of the polymer
increases the vertical asymptote corresponding to an
infinite electrode mass moves to higher current
values. An additional effect of increasing the
thermal conductivity is that the entire curve
(including the long delay portion) shifts to higher
current values. This is completely expected as the
devices depend on self-heating to switch and can be
compensated by decreasing the cross-sectional area
of the device enough to compensate for the shift.
This will not affect the height or width of the knee in
the graph, just the position on the current axis.
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Figure 13 Variation of trip time for various thermal
conductivities.

By altering the cross-sectional area, electrode
mass, and polymer thermal conductivity, it is
theoretically possible to match nearly any circuit
breaker design. By adjusting the necessary design
parameters, appropriate PCL curves were obtained
and are shown in figure 14.
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Figure 14 Proper coordination between PCLand circuit
breakers.

In practice, the limiting values of these parameters
will be determined by both physical and design
constraints, thus limiting the design flexibility. The
electrode mass and cross-sectional area will be
limited by size constraints of the applications.
Changing the thermal conductivity of the material
would prove difficult without adversely affecting
other material parameters. However, altering the
effective thermal conductivity of the PCL could be
accomplished without affecting the electrical
characteristics by slicing the device into thin sections
and sandwiching thermal masses in between the
layers.

V1. CONCLUSION

We have presented a comprehensive analysis of
the necessary design considerations for utilizing a
polymer current limiter in a low voltage power
distribution system. Several problems associated
with using a PCL in a high energy environment are
investigated and appropriate solutions are presented.

The effectiveness of a shunt link in dissipating
destructive amounts of energy during heavy short
circuits was analyzed utilizing models of the system
with and without a shunt link. An appropriately
designed shunt link was shown to prevent the
destruction of the PCL and facilitate coordination
with other system devices.

The effects of steady state load and ambient
temperature  conditions on  the  switching
characteristics of a PCL/shunt link system was
investigated. The effect of reducing the influence of
these environmental factors by increasing the
melting point of the polymer material was presented.

Finally, it was shown that, theoretically, the trip
time characteristics of a PCL can be arbitrarily
manipulated to match a circuit breaker’s
characteristics by varying three of the PCL’s design
parameters: the cross-sectional area, the electrode
mass and the thermal conductivity of the polymer
material. The electrode mass is a completely
independent variable while the area and polymer
thermal conductivity are linked and must be
balanced.

This paper is intended to introduce and explore the
feasibility of utilizing the characteristics of
specifically designed polymeric materials as current
limiting devices in low voltage power distribution
systems. As this application of this technology has
not been thoroughly explored, there is a need for
more extensive research. Of particular importance,
is the interaction with other current limiting devices




that may be present within the system, such as
current limiting circuit breakers.10 Future plans
include the inclusion of a mathematical model of a
current limiting circuit breaker in the same system to
explore this interaction.  Finally, while some
experimental data based on real-world situations has
been obtained to add validity to the models used
more experimental analysis needs to be conducted to
prove the accuracy of the models as they apply to the
application proposed here.
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ABSTRACT

In this short paper, we show that the indirect field-oriented controller for
induction motors guarantees the global asymptotic stability of speed tracking
error for time-varying speed and rotor flux references. The load torque is

assumed to be constant but is unknown.
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INTRODUCTION

The indirect field-oriented method for induction motor control is one of the
most common types of field-oriented methods used in industrial applications
since it does not require flux sensor (o'r.ﬂux estimator) to measure (or estimate)
the rotor flux (Vas, 1990). Recently, Ortega and Taoutaou (1996) proved that the
indirect field-oriented method provides asymptb‘tic tracking of constant speed

reference (assuming that the rotor flux reference is constant).

In this short paper, the results in Ortega and Taoutaou (1996) are improved to

include time-varying speed and rotor flux references. The load torque is assumed

to be constant but is unknown.
A CURRENT-COMMAND d—q MODEL OF INDUCTION MOTOR

Let Ayt = [Ag » Agh Baq* = [ > i1, @ and @ denote, respectively, the
transpose of the rotor flux vector, transpose of thg"cornmanded stator current
vector, rotor speed and rotor position. Then, a current-command d-g (direct-

quadrature) model of an induction motor is given by

d)“d Rr RrM' *

——-dt“ + @, Ty +z—xdq ==y, 1)
dw

J—d7'=2'—-fa)—2‘L (2)

dé :

= ~ G)




where o, is the slip frequency, T is the electrical torque, 7, is the load torque,

R, is the rotor resistance, L, is the rotor self inductance, M is the mutual
inductance, J is the rotor moment of inertia, fis the viscous friction coefficient

and J is a two by two skew-symmetric matrix. The electrical torque is given by

2n,M . . '
T=- )“dq']ldq ' (4)
nph r

where 7, is the number of pole pairs and 7, is the number of phases.

In the above model, the electrical variables are defined in a reference frame

which rotates at an angular speed of @, +n,0.

In the indirect field-oriented control, iy, and o, are the control inputs and

chosen as (Nabae ef al. (1980))

b, L 4

___-+—.—-
. | M RM at

i = .
dq nph Lr (3

2n,M Ay

©)

oo R T
o T ©)

N
where A,is the d component of reference rotor flux vector, which is defined as

A
da "1 9 ' @)




and 1" is the reference torque, whose value is determined by the control system

designer.

Note that A,," is aligned with the d axis of the d-q reference frame since g
component of A,," is defined to be equal to zero. Furthermore, the magnitude of

Agq iS A4 which, in this paper, is assumed to be time-varying.

q

In Ortega and Taoutaou (1996), a simplified version of the indirect field-
oriented controller is considered since the speed and flux references are assumed
to be constant. Otherwise, the indirect field-oriented controllers in this paper and

in Ortega and Taoutaou (1996) are exactly equivalent to each other.

The following analysis shows that the flux tracking error is exponentially
stable at the origin ( This was also reported in Espinosa-Pérez, Ortega and
Nicklasson (1997)). Later, it will be shown that the speed tracking error can be
forced to converge asymptotically to the origin by';p:foper choice of reference

torque T .
EXPONENTIAL STABILITY OF FLUX TRACKING ERROR

Let us define flux tracking error as
~ |, :
A‘dq:= Z L= A’dq‘A’dq (8)
9.1

Substituting A= Agq +A 4, in (1) results in




A gq ~ R~ RM_ . d . _R..
+aJ,J?\.dq+L—rxdq= L e~ -a)Sdeq—Zxdq ©)]

By direct substitution of (5), (6) and (7), we can show that

s ¢ Lr dx:"q Lr . 1 .
ldq = RrM-—dl‘_‘—l‘wstxdq -.-'-Mkdq (10)

As a result, error equation (9) becomes

~

dx, ~ R~
ok, = 0 (11)

Consider the candidate Lyapunov function
(12)

Assuming that the solution A 4q 10 equation (11) is unique and continuous for £ >

0, then, the derivative of ¥ with respect to time along the trajectory of 7~&d q 18

AV o~y Ay o o~ R R ~rn 2R
Tit—= :q dtq = —A,:q(a)sJ}\,dq +—L—7\,dq)=—~z—7\.§q7\‘dq =— I Ly (13)
which is negative definite. It follows that
3 T §
R | = N2V =27 @) = =[R, @ ™ fort 2 0 (14)




That is, the flux tracking error is exponentially decreasing with a rate of

convergence equal to the rotor time constant _RL

r

ASYPTOTIC STABILITY OF SPEED TRACKING ERROR

Let us choose the reference torque as

*

'c'=Jd§; + fo' = Uk, [ (00" )t~k (@-0") (15)

where " is the reference values of @. Feedback gains k; and k, are positive

constants.

Considering the torque equation (2) and reference torque (15), we can write

%=%(r—r')—kie,—(kp+§)e2—% N (16).
v&r‘here.e1:= .E(a)—m‘)dt and e,;= 0 - .
Forany 7, the following holds:
. M o
T =—-Eh—1-;—r—7&qu1dq 17

This can be proven by substituting the explicit values of idq‘ given by (5) and

Mg, given by (7) in (17).




Subtracting (17) from (4) gives

XL dA
.M -\ MTRM d
A S A (18)
2anZ;

ALk
~ o M M RM dt
-7 =-J ‘f(k,e1+k ez)— L AL ( do” .)
/la' 4 ny, L,. - Lr J ar +fa>
| 2n, M 2 |

(19)

Substituting (19) in equation (16), we can obtain total mechanical error

system as

e=(A, +A,())e +b[u(t) - fj—) | (20)




A L dj
MR M dt
= and u(t).=— dq ( t) .
1 nperJ np,,L, J dt +fo
| 2n, M A |

In (20), A ,is Hurwitz for &, and k, >0 since §-> 0. However, depending

on the initial value of the flux tracking eror A, , the eigenvalues of

A, +A,(t)might be in the open right-half complex plane for a time interval

L e
determined by the rotor time constant -R—’ During this time interval, the norm of

r

e, and in turn r*, will grow. As a result, the stator currents may saturate.

‘Taking this into account, let us make the following assumption:

RO

Asq(®)| for £20. | @1)

Then, the eigenvalues of A, +A,(f)will never be in the open right-half
égmplex plane.

Note here that condition (21) is consistent with the practical implementations.
For example, for A,4,"(0) == [0, 0] and 0< 4;(0) < A; (1) (see Bodson? Chiasson
and Novotnak (1995) for the selection of flux references in induction motors),

condition (21) holds.

Suppose that ' and A; are continuous, bounded, have bounded and

continuous first-order derivatives, and A, is bounded away from zero.




Furthermore, the load torque 7, is constant. Then, considering the exponential
stability of A 4q» We can say that equality (20) represents an exponentially stable
linear time-varying system perturbed by a constant disturbance (Khalil (1992)),

which means speed tracking error e, will converge asymptotically to the origin.

CONCLUSION

In the indirect field-oriented control of induction motors, the global
asymptotic stability of speed tracking error is achieved for time-varying speed

and flux references.
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ABSTRACT

In this paper, we design, and also experimentally verify, a passivity-based controller
that forces an induction motor which has significant magnetic saturation to track a time-
varying optimal flux trajectory. As a result, we are able to provide close tracking of a
time-varying speed/position trajectory that requires close to the maximum torque
achievable by the motor within the voltage and current limits.

Key words: Induction motor, magnetic saturation, passivity-based controller.
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1. INTRODUCTION

In high-performance motion control applications, selection of the rotor flux reference is -
an important issue since the maximum torque achievable by the motor depends on the
rotor flux level. At low speeds, the rotor flux is held constant at some maximum value
within the voltage and current limits to extract thé maximum torque from the motor. At
higher speeds, the rotor flux level is decreased to prevent the stator voltages from
saturating. In brief, the selection of time-varying, rather that constant, rotor flux reference

is essential to obtain maximum performance from the motor without saturating the stator

voltages.

Bodson ef al. [1] and Novotnak ef al. [2, 3] introduced time-varying optimal flux
trajectories for induction motors to obtain maximum positive torque during acceleration
(motor mode) and minimum negative torque during deceleration (generator mode) under

the voltage and/or current constraints. o

In this paper, we design, and also experimentally verify, a passivity-based controller
that forces the induction motor to track the time-varying optimal flux traje(;tory without
knowledge of the rotor electrical state variables (i.e., rotor fluxes or currents). As a result,
we are able to provide close tracking of a time-varying speed/position trajectory, which
requires close to the maximum torque achievable by the motor within the voltage and
current limits, without having to measure (or estimate) the rotor electrical sate variables.

The passivity-based controller in this paper takes into account the magnetic saturation

effects.




II. A CURRENT-COMMAND PASSIVITY-BASED CONTROLLER for

INDUCTION MOTORS

A current-command d-¢ model of the induction motor can be given by

dAh R RM).,
dtdq +(Lr)?\,dq = (——Lr jldq ) (1)
dw
JE— =7- fo 2)
do
P 3

where A, is the rotor flux vector, 17, is the reference stator current vector, @ is the motor
angular speed,@is the motor angular position, zis the electrical torque (the torque
produced by the motor), R, is the rotor resistance, L_is the rotor inductance, Mis the
mutual inductance, Jis the rotor moment of inertia_} and fis the viscous friction -

coefficient. The electrical torque is given by

2n,M .,
T= - Ao dig, 4)

phr

where n,is the number of pole pairs, 1,,is the number of phases, Kgqis the transpose of

Agand Jis a two by two skew-symmetric matrix.

In the above model, the electrical variables are defined in a special d-q reference frame

whose angular position with respect to the fixed stator reference frame is 1,6 .




The current-fed induction motor version of the passivity-based controller developed by

Ortega et al. [4, 5, 6] is given by

o)., L dp)

. cosa —sina| M RM di s
"4 T |sing  cosa nyL, 1 )
2n,M B(1)
where  is the solution of
d n,R,
(94 _ e T (6)

dr 2n, B)°

In (5) and (6), A(f)is the magnitude of the reference rotor flux vector and 7'is the

reference torque. The reference rotor flux vector is defined as

COoS&x
A, :/3@[ ]

sina

and the reference torque is chosen as

do” —/j

= v fo = I, [ (6~ 0t ~ Iy (6-67) - S0~ 0°) ‘&

-

where @"and @" = 7 are the reference values of § and w, respectively. Feedback

S

gains k,, k,and k;are positive constants. .

It can be shown that current-command passivity-based controller (5) provides

exponential tracking of time-varying speed/position and flux trajectories.
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The current-command passivity-based controller is equivalent to the well-known indirect
(strictly feedforward) field-oriented controller (the de facto industry standard) [5].
Implementations of the indirect field-oriented controllers based on the linear and saturated

magnetic models of the induction motor can be found in [7] and [8], respectively.

( TIL) INCORPARATION of MAGNETIC SATURATION EFFECTS INTO

PAS SIVITY—B ASED CONTROLLER

Levi et al. [8], Heinemann et al. [9], Sullivan et al. [10, 11] developed field-oriented
controllers based on saturated magnetic models of the induction motor. An input-output

linearization controller, which takes the saturation effects into account, was designed by

Novatnak et al. {2, 3].

In [2, 3, 9], saturation is assumed to be entirely in the main flux path of the induction
motor. That is, the change in the mutual inductance due to saturation in the material is
considered and the changes in the stator and rotor leakage factors are neglected. Using the

same approach, we can rearrange passivity-based controller (5) as

*
.

] L, dp@)

! —r PN

. |cosa —sina T (’B(t))+R,M dt

‘e Tl sing  cosa nul, ° )
2n,M B(t)

where f'() is the inverse of the magnetization curve function of the induction motor. In

L
(7), the nominal values of L, and M are used. This is reasonable since H’ =1+0,, where

o, is the rotor leakage factor [12], and the change in o, due to the saturation is neglected.




values of A(f)which remain in the linear magnetic region,

For the

t
(B = —'%(/[—)-with M constant so that (7) reduces to (5).

IV. SPEED ESTIMATOR

The passivity-based technique requires the kndwledge" of the speed and position to
achieve speed/position tracking control. In a typical experimental setup, only position

measurements are available and hence, a speed estimator must be implemented in real-time

to compute the speed.

The easiest way to estimate the speed is the numerical differentiation of the position

outputs from the optical encoder. That is

6(nT) - 6((n - )7)
T (®)

@ =

where @is the estimated speed, Tis the sample pe;ii_od and 6(nT)is the position
measurement at f=nT. However, a 2880pulses per revolution (resolution of

2880

radians) encoder is used in the experimental setup and computing @by (8) may

27
28807

cause an error in the speed estimate up to

Lorenz et al. [13] and Bodson et al. [14] proposed, and also experimentally verified,

speed estimators based on the dynamic model of the motor and the position§’

r

measurements. In this paper, the following speed estimator was used [13] :

%?—mz,(eié) ©)
ot f . .
%:%-gmg(e—a) (10)




where, again @ is the estimate of the speed, @ is the estimate of the position, and /,, /,are -
the estimator gains.

Fig. 1 shows a block diagram for the passivity-based control of the induction motor.

V. OPTIMAL FLUX TRAJECTORY,

Bodson et al. [1] and Novotnak ef al. [2, 3] introduced, and also experimentally
verified, time-varying optimal flux trajectories to extract maximum positive torque during
acceleration (motor mode) and minimum negative torque during deceleration (generator

mode) from the induction motor under the voltage and/or current constraints.

In this paper, A(¢), the magnitude of the rotor flux vector, was chosen as the solution of

d, do’
A n(—f;‘(ﬁ(t))+ 1- ‘”) -y

dt HB()3, (@7)
R 2n,M . . )
where 1=, HETr and &, (@")is the solution to the saturated magnetics
ph r

r

optimal torque problem [2, 3].

VI EXPERIMENTAL RESULTS

Current-command passivity-based controller (7) was tested on an experimental setup
which consisted of (i) a 3-phase, 6-pole, 1-Hp, squirrel cage induction motor, (i) a
Motorola DSP96002 (floating point proceésor) ADS systém, (iii) a data acquisition board,

and (iv) three 20 kHz PWM amplifiers (150 Volts and +10 Amperes). The parameters




.

of the induction motor are listed in Table I. The position measurements were obtained

through a 2880 pulses per revolution (resolution of 22:0 radians) line encoder.
TABLE
INDUCTION MOTOR PARAMETERS
M 0225H
L. 0244H
Ly 0244 H
Rt' 2.1 Q
R, 185Q
J  0.0185N-m-s®
f 0.0 N-m/rad/sec

Fig. 2 shows the magnetization curve of the induction motor which was determined by

Novotnak [3].

In the experiment, a point-to-point position move was carried out in which the motor
was accelerated from the rest to a speed of 170radians per second in 0.486 seconds and
decelerated from 170radians per second to Oradians per second in 0.449 seconds. This

£
type of mechanical trajectory was chosen since it requifes 90% of the maximum positive
torquie achievable by the motor used in the experiment under the voltage and current limits
[2, 3].That is, the motor must produce close to the maximum torque to accelerate from

the rest to 170 radians per second in 0.486 seconds. The magnitude of the reference rotor

flux vector was chosen as the solution of (11).

Fig. 3 shows estimated speed @ and reference speed @’ (the two are so close that they

are indistinguishable in the figure). Fig. 4 is a plot of speed error @ —w". Fig. 5 shows

1
measured position @and reference position 9" = L @'dt ( the two are so close that they




are indistinguishable in the figure). Fig. 6 is a plot of position error €—6" . Note that in

2z :
Fig. 6, the final position error is one encoder count (lcount = 2880 radians), that is,

within the encoder resolution. The position error during the entire move is within

9lencoder counts. In brief, a close tracking of time-varying speed and position

trajectories was achieved.

An input-output linearization controller [2, 3] was also able to provide tracking of the
same mechanical trajectory by keeping the final position error at the end of the run within

the encoder resolution. But, during the entire run, the position error reached values as

high as 64 encoder counts.

To achieve the maximum torque at the beginning of the move, the rotor flux must be at
its maximum value [2, 3]. Therefore, the rotor flux was ramped up from zero to its
maximum value of 11Webers before the motor was commanded to move at
t= 0.125 seconds. Fig. 7 shows the magnitudes of thqfv"e_stimated rotor flux vector and

reference rotor flux vector. The rotor flux vector was estimated off-line by solving the

following equation:

N

dh,, . R{Mfm”l(

A
dt L, 7:,1
q

)|~ (RM),
Ay = (T)ldq (12)

r

where the components of i, were collected from the experiment.




VII. CONCLUSIONS

In this paper, we designed, and also experimentally verified, a current-command
passivity-based controller that forces an induction motor which has significant magnetic
saturation to track time-varying speed/position and flux trajectories without knowledge of
the rotor electrical state variables. Also, we used a speed estimator, which is based on the
dynamic model of the induction motor and the position measurements, to remove the need

of measuring the motor speed.
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Fig. 1. Block diagram for the current-command passivity-based control of the induction motor.
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Incorporation of Magnetic Saturation Effects into
Passivity-Based Control of Induction Motors
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ABSTRACT

" Tt is well known that saturation of the magnetic material will cause deterioration in the
trajectory tracking performance of the controllers based on the linear (nonsaturated)
magnetic model of the induction motor. In this paper, we design a passivity-based
controller taking into account saturation of the magnetic material in the main flux path of
the induction motor to provide precise tracking of time-varying speed, position and flux
trajectories. The proposed controller does not require knowledge of the rotor electrical
state variables (i.e., rotor fluxes or currents). As a result, there is no need for a sensor (or
state estimator) to measure (or compute) the rotor electrical state variables. Experimental
results show that the passivity-based controller provides close tracking of time-varying
speed, position and flux trajectories without knowledge_of the rotor electrical state
variables.

* Key words: Induction motor, magnetic saturation, passivity-based control.
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I. INTRODUCTION

Control algorithms for induction motors are usually developed assuming that saturation .-
does not occur in the magnetic material making up the flux paths. However, in practice,
saturation does occur very frequently with a significant impact on the motor dynamics.
Thus, the effects of saturation have to be taken int§ account if applications require precise

speed and position tracking control.

Heinemann et al.[1], Levi et al.[2] and Sullivan ef al[3, 4] have developed field-
oriented controllers based on saturated magnetic models of the induction motor. An input-

output linearization controller, which takes into account the saturation effects, was

designed by Novotnak et al.[5, 6].

In [1, 5, 6], saturation is assumed to be entirely in the main flux path of the induction
motor. That is, the éhange in the mutual inductance due to saturation in the magnetic
material is considered and the changes in the statq;’"iagd rotor leakage factors are
neglected. In this paper, psing the same approach, wé design, and also experimentally
verify, a passivity-based controller that provides precise tracking of time-varying speed,
position and flux trajectories even if the motor is operated in magnetic saturation regions.
The proposed controller does not require knowledge of the rotor electrical state variables
(i.e., rotor fluxes or currents). As a resuit, there is no need for a sensor (or state estimator)

2

to measure (or compute) the rotor electrical state variables.




The work in this paper is an extension of the work [7] in which, following Ortega et
al.[8,9,10], Gokdere et al. [7] designed, and also experimentally verified, a passivity-based

controller under the assumption of linear (nonsaturated) magnetics.
II. A CURRENT-COMMAND d-g MODEL of INDUCTION MOTOR

Consider a general d-q (direct-quadrature) reference frame whose angular position with

respect to the fixed stator reference frame isgwhere@dis an arbitrary angle. In this

reference frame, a current-command d-¢ model of the induction motor can be given by

dq R, R M.,
do
2 e fo @
dg
P C)

8o

where ).dq is the rotor flux vector, izqis the reference stator current vector, Jis the two

by two skew-symmetric matrix, @, is the slip frequency, @ is the motor angular speed, s
the motor angular position, 7 is the electrical torque (the torque produced by the motor),
R is the rotor resistance, L_is the rotor inductance, M is the mutual inductance, Jis the
rotor moment of inertia and fis the viscous friction coefficient [7]. The slip frequency

and electrical torque are given by

A

S

d¢ :
—d—t——n 0] (4)

P




and

ZnPM

T= -
n,L,

7 i S)

where n,is the number of pole pairs, 7, is the number of phases and lﬂq is the transpose

of Ayq-

Because angle gis arbitrary, the definition of slip frequency (4) is not the definition

normally used for induction motor.

III. A CURRENT-COMMAND PASSIVITY-BASED CONTROLLER for

INDUCTION MOTORS
In the current-command passivity-based control of induction motors, both i:;q and ¢

are considered as the control inputs. Specifically, i:;qis given by

"_{_’{(i;._[__l_l."__%"
A M RM dt
igq = A (©6)
IZPhL, vl
| mMA
and ¢ is chosen as the solution of
d 'IZ R, ral
49 Tl T +n,0 @)

dt  2n, /?.;2




where 7" is the reference torque and A;is the d component of the reference rotor flux
vector [7] (see also [8, 9, 10] for more information about passivity-based control of

induction motors). The reference torque is given by

-

= J%’t—+ fo" - Jk, L‘ (6-6°)dt - J, (6~ 87) - Jhey (@ - @) (8)

-

where 8" and @" = are the reference position and reference speed, respectively.

Feedback gains ki , &, and ks are positive constants.

In the current-command passivity-based control of induction motors, exponential

tracking of time-varying speed, position and flux trajectories is achieved.

IV. INCORPORATION of MAGNETIC SATURATION EFFECTS into

PASSIVITY-BASED CONTROLLER

In [1, 5, 6], saturation is incorporated assuming that it is entirely in the main flux path

of the induction motor. That is, the change in the mutual inductance due to saturation of

the nfagnetic material is considered and the changes in the stator and rotor leakage factors

are neglected.

Using the approach in [1, 5, 6], we can then rearrange reference stator current vector

(6) as
i L dx ]
s -1 l‘ 4 r 7d
R
igq = O
n,L, ¢*
i 2n,M 2; |




where f' () is the inverse of the magnetization curve function of the induction motor. In

L
(9), the nominal values of L and M are used. This is reasonable since ﬂ[r_: 1+0,), -

where o, is the rotor leakage factor [11], and the change in o, due to saturation is

neglected. For the values of A;which remain in the linear magnetic region,
. | - 2’; .
[ (A)= kuh M constant so that (9) reduces to (6).

V. SPEED ESTIMATOR

The passivity-based technique requires the knowledge of the speed and position to
achieve speed and position tracking control. In a typical experimental setup, only position
measurements are available and hence, a speed estimator must be implemented in real-time
to compute the speed. Following Lorenz et al. [12], Bodson ef al. [13] introduced a speed
estimator based on the dynamic model of the induction motors. However, the speed
estimator in [13] uses the estimated value of the rotor flux. To remove the need of

¢

estimating the rotor flux, Gokdere et al[7] modified the speed estimator in [13] as

follo‘vs‘/ing:
dé . -
z:wﬂ,(e—e) (10)
da .. S . e
— = Wi, =0 +1,(0-6) 11)

IS

In (10) and (11), @ is the estimate of the speed, 8 is the estimate of the position, /;, I

A 2n M
are the estimator gains and y = .
n,,JL,




Gokdere et al.[7] have experimentally shown that speed estimator (10)-(11) works well

for the passivity-based control of induction motor.

The block diagram for the current-command passivity-based control of the induction

motor is shown in Figure 1.

8| g _npRe T n
dt 2np ;_;2 P
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Fig. 1. The block diagram for the current-command passivity-based control of the induction motor.




V1. EXPERIMENTAL RESULTS

The passivity-based controller (9) was tested on an experimental setup which consisfed ;
of (i) a 3-pilase, 6-pole, 1-Hp, squirrel cage induction motor, (ii) a Motorola DSP96002
(floating point processor) ADS system, (iii) a data acquisition board, and (iv) three 20 kHz
PWM amplifiers (& 150 Volts and + 10 Amps). The position measurements were obtained
through a 2880 pulses/revolution (resolutfon of 360°/2880=.125") line encoder. Tile
induction motor parameters are M =0.225H, L, =0.244 H, L, =0.244 H, R, =2.1 Q, R,
= 1.85 Q, f = 0.0 N-m/radians/second, and J = .0185 N-m-s>. Fig. 2 shows the
magnetization curve of the induction motor which was determined experimentally by

Novotnak [6].

1.8 v v ~ 1 T v -
1.6
14

1.2
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0.8

0.6 e

04

© Amps

Fig. 2. Magnetization curve of the induction motor.




In the experiment, a point-to-point move was carried out in which the motor was
accelerated to a speed of 170 radians/second in 0.486 seconds and decelerated from 170
radians/second to O radians/second in 0.449 seconds. This type of mechanical trajectory
was chosen since it requires 90% of the maximum pbsitive torque achievable by the motor
under the voltage and current constraints [S, 6]. That is, th_e motor must produce close to

the maximum torque to accelerate from 0 to 170 radians/second. The magnitude of the

flux reference was chosen as the solution to

ary, RM( . . 1 do"
4 = - fm l (Z‘d) + * * J
L 16 (@) dl

r

where &,,, (™) is the solution to the saturated magnetics optimal torque problem [5, 6].

The PI current-command gains were set as Ky, = 150.0, Kz = 1500.0 and Ko, = 110.0,
K, =2500.0. The PID gains for the speed and position tracking errors were chosen to be

k1 = 0.0, &, = 10200.0, and k3 = 120.0. The speed estimafar gains were /; = 4000 and [, =

400000. The sample rate was 2.5 kHz.

Figures 3 - 9 show the results. Figure 3 is the plots of estimated speed @ and reference
speed @" (the two are so close that they are indistinguishable in this figure). Speed was

estimated using estimator (10)-(11). Speed tracking error @-®" is given in Figure 4.
T

t
Figure 5 shows measured position 8 and reference position 6" = Jco'dt (again, the two
0

are so close that they are indistinguishable in the figure). Position tracking error 6 — o is

given in Figure 6. Note that in Figure 6, the final position error is one encoder count (1




count = 27 /2880 radians), that is, within the encoder resolution. The position error
during the entire run is within 17 encoder counts. In brief, a close tracking of the time-

varying speed and position trajectories was achieved.

An input-output linearization controller [5, 6] was also able to provide tracking of the
same mechanical trajectory by keeping the final position error at the end of the run within

the encoder resolution. But, during the entire run, the position error reached values as

high as 64 encoder counts.

To achieve the maximum torque at the beginning of the move, the flux must be at its
maximum value [5, 6]. Therefor, the flux was ramped up from zero to its maximum value

of 1.1 Webers before the motor was commanded to move at #=0.125 seconds. Fig. 7
shows the magnitudes of estimated rotor flux vector qu and reference rotor flux

vectorkzq. The rotor flux vector was estimated off-line by solving the following

3
5

equation:

] 2, B | A i
a4 LRM ISR AN R M 12
de| ~ | T~ | L [ || L |;

/14 /1,1 r Zd +/1q /lq T,

izth" T‘ RrM 1; -
where @, = o TS 1 The values of 7,, i, and i, were collected from the
v P d r d
experiment.
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In Fig. 7, the small perturbations around the reference value of the flux are due to the
tracking performance of the current loops [7]. That is, the perturbations occur since the

stator currents can not track exactly their corresponding references ( see Figures 8 and 9).

For comparison purposes, passivity-based controller (6), which is based on the linear
magnetic model, was also implemented to control the' same motor along the same

mechanical trajectory. The magnitude of the flux reference was chosen as the solution of

differential equation

dr, R .. RM  do'
=——"A4 + =
dt Lr lu‘[‘r 5201:! (a) )2’4 dt

where &, (@")is the solution to the linear magnetics optimal torque problem [14].

The PI current-command gains were set as Ky, = 150.0, Kz = 1500.0 and X, = 110.0,
Ky = 2500.0. The PID gains for the speed and position tracking errors were chosen to be .
ky = 0.0, &, = 10200.0, and A3 = 120.0. The speed estiméjté‘r gains were /; = 4000 and £, =

400000. The sample rate was 2.5 kHz.

Figures 10 - 12 show the results with the controller based on the linear magnetic
model. Figure 10 is a plot of the speed tracking error. The position tracking error is given
in Figure 11. Note that in Figure 11, the final position error is one encoder count.
Mo}eover, the position error during the entire run is within 23 encoder counts. In brief, a
close tracking was achieved even though the controller was based on the linear magnetic

model.
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An input-output linearization controller based on the linear magnetic model was not
able to provide tracking of the same mechanical trajectory [5, 6]. The reason for this is
that the input-output linearization technique relies on an estimate of the rotor flux and an

estimator based on the linear magnetic model gives an incorrect value for the flux if

saturation occurs in the motor.

| Fig. 12 shows the flux tracking performance of passivity-based controller (6). From tﬁis
figure, it is seen that the controller based on the linear magnetic model fails to increase the
flux from zero to the maximum value of 1.32 Webers which is well above the linear
magnetic region (see the magnetization curve in Fig. 2). Again, the rotor flux vector was

estimated off-line by solving equation (12).
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VII. CONCLUSIONS

In this paper, we designed, and also experimentally verified, a current-command passivity-
based controller for induction motors which have significant magnetic saturation. The
proposed controller provides close tracking of time-varying speed, position and flux

trajectories without knowledge of the rotor electrical state variables.
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Abstract— An experimental and theoretical comparison of
passivity-based and input-output linearization controllers for
induction motors is presented. The comparison is done taking
into account saturation of the magnetic material in the main
flux path of the induction motor. Experimental results show
that the use of the passivity-based controller results in reduced
position tracking errors as compared with the input-output
linearization controller.

I. INTRODUCTION

The passivity-based [1, 2] and input-output linearization
[3, 4, 5] methods are the most recent control methods for
induction motors. The current-command passivity-based
controller is an indirect (strictly feedforward) field-oriented
controller while the current-command input-output
linearization controller is a direct field-oriented controller.

The key stép with the passivity-based method is the
identification of terms, known as workless forces, which
appear in the dynamic equations of the induction motor but
do not have any effect on the energy balance equation of the
induction motor [1, 2]. These terms do not influence the
stability properties of the induction motor and hence there is
no need to cancel them with feedback control. This leads to a
simpler control structure and enhances the robustness of the
control system.

The input-output linearization method eliminates, in the
field-oriented coordinates, the coupling of the rotor flux and

This work was supported in part by the Office of Naval Research under
Grant N00014-96-1-0926. )

speed dynamics [3, 4, 5]. As a result, independent
(decoupled) control of the speed and flux is achieved with
the input-output linearization method

In this paper, an experimental and theoretical comparison
of current-command passivity-based and input-output
linearization controllers for induction motors is presented.
The comparison is done taking into account the magnetic
saturation effects.

II. PASSIVITY-BASED AND INPUT-OUTPUT LINEARIZATION
CONTROLLERS FOR INDUCTION MOTORS

A current-command d-q (direct-quadrature) model of the
induction motor is given by

Ahag/dt + @Thaq + RILY) hag = RMIL)isg™ ()
Jda/dt =t —fo-u 2
dildt = o ®

where qu is the rotor flux vector, idq' is the commanded
value of the stator current vector, @ is the rotor speed, G is
the rotor angular position, T is the electrical torque, Tr is the
load torque, @ is the slip frequency, J is the rotor moment
of inertia, f is the viscous friction coefficient and J is a two
by two skew-symmetric matrix.




The current-command passivity-bascd controller taking
into account the magnetic saturation eflects is given by

L [mrenr@mm)agian|
S N O VYR 7)) CE S @

and
a} = 77ph R,—T‘/(Z IIPXd.z) (5)

where fm"' is the inverse of the magnetization curve

function of the induction motor, Kd‘ is the reference value of
d component of the rotor flux vector, 1" is the reference
torque, Mp), is the number of phases and 77, is the number of
pole-pairs. The values of A4 and T are specified by control
system designer.

The input-output linearization controller taking into
account the magnetic saturation effects can be found in [4,
5].

III. COMPARISON OF PASSIVITY-BASED METHOD WITH
INPUT-OUTPUT LINEARIZATION METHOD

Like the input-out linearization method [3, 4, 5], the
passivity-based method allows for the use of time-varying
rotor flux references. Thus, the flux level can be adjusted to
optimize the torque under the current and voltage bounds
(see [6] for torque optimization in induction motors).

~ In the passivity-based method, the controller does not
require knowledge of the rotor flux; therefore, a rotor flux
estimator is not needed in contrast with the input-output
linearization method. Another disadvantage with the input-
output linearization method is that it requires a real-time
division by the rotor flux state variable, which is a
computational disadvantage.

In the passivity-based method, the discrete values of 1/
A4 have to be stored in the memory of the processor in

advance to prevent real-time division by A4". This means the
passivity-based method requires more memory storage. In
the input-output linearization method, implementing the flux
estimator requires very little amount of memory (only a
couple of lines of programming code).

Like the input-output linearization controller, the
passivity-baséd controller requires knowledge of the speed to
achieve speed tracking control. In a typical experimental
setup, only position measurements are available through an
optical encoder and hence, a speed estimator based on the
position measurements must be implemented in real-time to
compute the speed.

Finally, unlike the input-output lincarization method, in
the passivity-based method, the confrol law is globally
defined and is frce of singularitics [7]. That is, the control
law is valid even if the rotor flux is identically zero.

Current-command passivity-based controller (4)-(5) was
tested using the same experimental setup as in [4, 5].
Furthermore, for comparison purposcs, the same
speed/position and flux trajectories as in [4, 5] were
considered. The experimental setup consisted of : (i) a 1
horsepower, three-phase induction motor which has
significant magnetic saturation, (ii) a Motorola DSP96002
(floating point processor) ADS system, (iii) three 20 kHz
PWM amplifiers (150 Volts and + 10 Amps) and (iv) a data
acquisition board to measure the phase currents and to
command the phase voltages to the amplifiers. The sampling
frequency was 2.5 kHz. In the experiment, a time-varying
speed/position trajectory that requires close to the maximum
torque achievable by the motor under the voltage and current
constraints was considered [4, 5]. Furthermore, a time-
varying optimal flux trajectory was used to force the
induction motor to track the mechanical trajectory [4, 3.
Figures 1-3 show some of the results obtained with the
passivity-based controller (see [4, 5] for the results obtained
with the input-output linearization controller). Fig. 1 is a
plot of the estimated speed @ and the reference speed "
(the two are so close that they are indistinguishable in this
figure). The speed was estimated using a speed estimator
based on the dynamic model of the induction motor and
position measurements. Fig. 2 shows the measured position

t
@ and the reference position §° = fa)'dt (again, the two
N 0

are so close ‘that they are indistinguishable in the figure).
The position was measured through a 2880 pulse/rev line
encoder. The position tracking error & — 8" is given in Fig.
3. Note that in Fig. 3, the final position error is one encoder
count (1 count = 27z /2880 radians), that is, within the
encoder resolution.

From the experimental results, we can conclude that:

1) The use of the passivity-based controller results in
reduced position tracking errors as compared with the input-
output linearization controller.

2) The passivity-based controller is less sensitive to
magnetic saturation than the input-output linearization

- controller. That is, using linear magnetic model, we can still

obtain satisfactory results with the passivity-based controller
even though the motor is operated in magnetic saturation
region. This is in contrast with the input-output linearization




controller. The reason for the poor performance of an input-
output linearization controller bascd on the linear magnetic
model is that the input-output lincarization tcchnique relics
on an estimate of the rotor flux and an estimator based on
the linear magnetic model gives an incorrect value for the
flux if saturation occurs in the motor.

3) The input-output linearization controller provides closer
tracking of time-varying rotor flux trajectories since the flux
tracking control is in the form of closed-loop. Note here that
high-performance motion control applications require
rapidly changing rotor flux trajectories.

1V. CONCLUSIONS

The input-output linearization controller provides closer
tracking of rapidly changing rotor flux trajectories, which
are required for high-performance motion control
applications, since the flux tracking control is in the form of
closed-loop. However, the experimental results show that the
use of the passivity-based controller results in reduced
position tracking errors as compared with the input-output
linearization controller.
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Abstract—Speed estimators for indirect field-oriented
P 1I. SPEED ESTIMATORS FOR INDIRECT FIELD-ORIENTED

control of induction motors are proposed to remove the need of
measuring the speed. The speed estimators are based on 1)
dynamic model of the induction motor and 2) position
measurements obtained through an optical encoder.
Experimental results are given to verify the speed estimators.

I. INTRODUCTION

Motion controllers for induction motors require precise
knowledge of the speed to achieve close tracking of time-
varying speed and position trajectories. In applications, the
speed is computed through the use of an estimator. This
removes the need of measuring the speed.

The easiest way to compute the speed is the discrete
differentiation of the position output from an optical encoder.
However, at high sample rates and low speeds, this approach
results in large errors in the speed estimate. Lorenz ef al.[1]
and Bodson ef al.[2] have shown, and also experimentally
verified, that the use of speed estimators based on the
dynamic model of the induction motor results in reduced
speed/position tracking errors as compared with an estimator
based on the discrete differentiation.

In this paper, we propose, and also experimentally verify,
speed estimators for indirect field-oriented control of
induction motors. The proposed speed estimators are based
on 1) dynamic model of the induction motor, and 2) position
measurements obtained through the use of an optical
encoder.

This work was supported in part by the Office of Naval Research under
Grant N00014-96-1-0926.

ConTRrOL OF INDUCTION MOTORS

Let quT = [Aa, A4, idq*T =[is , iq*], ®, O denote,

respectively, the transpose of the rotor flux vector, transpose

of the commanded stator current vector, rotor speed and
rotor position. Then, a current-command d-g (direct-
quadrature) model of an induction motor is given by

R RM. .

d;q +a>sJ7\.dq +Zldq :—zr—ldq )]
do

J?:r—fa)—g )

a_, 3

ar 3

where @, is the slip frequency, 7 is the electrical torque, R,

is the rotor resistance, L, is the rotor self inductance, Mis
the mutual inductance, J is the rotor moment of inertia, f is

the viscous friction coefficient and J is a two by two skew-
symmetric matrix. The electrical torque is given by

2an
n, L

ph™r

T=— quJi;q @)




»

where 71, is the number of pole-pairs and 77pn is the number
of phases.

. ®
In the indirect field-oriented control, 14q and @,are the

control inputs and defined as

21 M+ (L, 1 (RM))(dAy [ di)

e T (L, 1 @n, M) T 2 ©

.
o n th, T

o, v
s 2
2n, A,

* .
where A,is the d component of reference rotor flux vector

* . .
Agq which is defined as

>
Adq 1= [ 6’} Q)

* - -
and 7 is the reference torque whose value is determined by
the control system designer.

Following Lorenz et al.[1], Bodson et al.[2] introduced,

and also experimentally verified, a speed estimator based on

the dynamic model of the induction motor. However, the
speed estimator in [2] uses the estimated value of the rotor
flux. To remove the need of estimating the rotor flux, we
modify the speed estimator in [2] as following:

dé .
—=0+1|6-0 8
dt ‘( ) ®
do & ) o
—= A, - a)+l(9—9) ©)
where @ and é are estimates of the speed and position,
2n M
respectively, /1, /2 are estimator gains and 4 =
n phJL,

In speed estimator (8)-(9), the value of the load torque is
assumed to be zero. To incorporate the effects of the load
torque, speed estimator (8)-(9) is extended as following [2]:

;—:mll(e—é) 0
%—ﬂz;iq—§ca—%+zz(e—é) S ay
fi-(f-;?/i):m@(wé) (12)

©

where fL is the cstimate of the load torque and /3 is the

A

T
. . . L
estimator gain. The estimator models 7 as a constant,

Though no analytical proof to guarantee the convergence
of @ —> @ is given, speed estimators (8)-(9) and (10)-(12)
experimentally work well.

III. EXPERIMENTAL RESULTS

In the experiment, a 6-pole, 1/12 horsepower, two-phase
induction motor with a squirrel cage rotor was used. The
induction motor is rated at 60 Volts, 2.4 Amps (continuous)
and 7300 rpm (revolutions per minute). The motor

parameters are M = 011 H, L, = 014 H, L, = 014 H, R, =

390, R, =1.7Q, f=.00014 N-m/rad/sec, and J = .00011
kg-m®. The hardware setup consisted of a Motorala
DSP56001 (fixed point processor) ADS system, two 20 kHz
PWM amplifiers (80 Volts and =6 Amps), and a data
acquisition board to measure the phase currents and to
command the phase voltages to the amplifiers. The position
measurements were obtained through a 2000 pulse/rev

(resolution of 360°/2000= 18°) optical encoder. The
sampling frequency was 5 kHz.

Applying a simple Euler integration routine, the
estimator defined by equations (8) and (9) was implemented
on the processor as

8((n+1T) = 6(nT) + T(&(nT) + 1,(0n7) - 6(n7)))
13)

&+ 1)3"): &(nT)+
( W, (D), (nT) - L L)+, b(T)- é(nT)))
(14

where T is the sampling period.

Figures 1-4 show the results. Fig. 1 is a plot of the

estimated speed @ and the reference speed @ (the two are
so close that they are indistinguishable in this figure). The

speed tracking error @—w" is given in Fig. 2. Fig. 3
shows the measured position @ and the reference position

t
g’ = J.a)'dt (again, the two are so close that they are
0

indistinguishable in the figure). The position tracking error
@ — 0" is.given in Fig. 4. Note that in Fig. 4, the final

position error is one encoder count (1 count = 27 /2000
radians), that is, within the encoder resolution. The position




-

error during the entire run is within four encoder counts. In
brief, a close tracking of the time-varying speed and position
trajectories was achieved.

In addition to these experimental results, the same speed
estimator was implemented replacing i, with 7 ; in (14) and
similar results were obtained.

Finally, speed estimator (10)-(12) was expcn’mentaliy
verified.
IV. CONCLUSIONS

In the indirect field-oriented control of induction motors,
the use of speed estimators based on the dynamic model of

the induction motor results in close tracking of time-varying
speed and position trajectorics.
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Abstract—In this paper, we design, and also experimentally
verify, a passivity-based controller that forces an induction
motor which has significant magnetic saturation to track a
time-varying optimal flux trajectory. As a result, we are able to
provide close tracking of a time-varying speed/position
trajectory that requires close to the maximum torque
achievable by the motor within the voltage and current limits.

I. INTRODUCTION

In high-performance motion control applications,
selection of the rotor flux reference is an important issue
since the maximum torque achievable by the motor depends
on the rotor flux level. At low speeds, the rotor flux is held
constant at some maximum value within the voltage and
current limits to extract the maximum torque from the
motor. At higher speeds, the rotor flux level is decreased to
prevent the stator voltages from saturating. In brief, the
selection of time-varying, rather than constant, rotor flux
reference is essential to obtain maximum performance from
the motor without saturating the stator voltages.

Bodson, Chiasson and Novotnak [1, 2] and Novotnak [3]
introduced time-varying optimal flux trajectories for
induction motors to obtain maximum positive torque during
acceleration (motor mode) and minimum negative torque
during deceleration (generator mode) under the voltage
and/or current constraints.

In this paper, we design, and also experimentally verify, a
passivity-based controller that forces the induction motor to
track the time-varying optimal flux trajectory without

This work was supported in part by the Office of Naval Research under
Grant N00014-96-1-0926.

knowledge of the rotor electrical state variables (i.e., rotor
fluxes or currents). As a result, we are able to provide close
tracking of a time-varying speed/position trajectory, which
requires close to the maximum torque achievable by the
motor within the voltage and current limits, without having
to measure (or estimate) the rotor electrical state variables.
The passivity-based controller in this paper takes into
account the magnetic saturation effects.

II. CURRENT-COMMAND PASSIVITY-BASED CONTROLLER
FOR INDUCTION MOTORS

A current-command d-¢ model of the induction motor can
be given by

ORI

a 7 )L, ) M
do

J*E = r—fa) (2)

. 3
T 3

where A 4 18 the rotor flux vector, i:,q is the reference value
of the stator current vector, @is the motor angular
speed, @ is the motor angular position, 7is the electrical
torque (the torque produced by the motor), R, is the rotor




resistance, L, is the rotor inductance, M is the mutual
inductance, Jis the rotor moment of inertia and fis the
viscous friction coefficient. The electrical torque is given by
2, M ALJIE @)
oLy dq ‘
where 77,is the number of pole-pairs, 17, is the number of

T=-

phases and J is a two by two skew-symmetric matrix.

In the above model, the electrical variables are defined in
a special d-g reference frame whose angular position with
respect to the fixed stator reference frame is 1 pe .

The current-fed induction motor version of the passivity-
based controller developed by Espinosa and Ortega [4] and
Ortega, Nicklasson and Espinosa [5, 6] is given by

A L, dp@)
. _[cosa
g = [sina

M RM dt
where ¢ is the solution of

—sinx ©
cosa nyL, <"

-

da nyR, r

= ©)
dt ~ 2n, ()

In (5) and (6), B(f)is the magnitude of the reference rotor

flux vector and 7 is the reference torque. The reference
rotor flux vector is defined as

. ‘lcosa
dg = ﬂ(t) sina
and the reference torque is chosen as
. ,do’ . t .
R L ~ Tk [ (6-6)a
W ACECENACEEY)

kS

where @ and " = are the reference values of @ and

dt
@, respectively. Feedback gainsk,, k,andk;are positive
constants. _
It can be shown that current-command passivity-based

controller (5) provides exponential tracking of time-varying
speed/position and flux trajectories.

The current-command passivity-based controller is
cquivalent to the well-known indirect (strictly feedforward)
field-oriented controller (the de facto industry standard) [5].
Implementations of the indirect field-oriented controllers
based on the linear and saturated magnetic models of the
induction motor can be found in [7] and [8], respectively.

1II. INCORPARATION OF MAGNETIC SATURATION EFFECTS
INTO PASSIVITY-BASED CONTROLLER

Levi, Vukosavic and Vuckovic (8], Heinemann and
Leonhard [9], Sullivan and Sanders [10], and Sullivan, Kao,
Acker and Sanders [11] developed field-oriented controllers
based on saturated magnetic models of the induction motor.
An input-output linearization controller, which takes the
saturation effects into account, was designed by Novotnak,
Chiasson and Bodson [2] and Novotnak[3].

In [2, 3, 9], saturation is assumed to be entirely in the
main flux path of the induction motor. That is, the change in
the mutual inductance due to saturation in the magnetic
material is considered and the changes in the stator and rotor
leakage factors are neglected. Using the same approach, we
can rearrange passivity-based controller (5) as

. [ecos
ito=| .
“ " lsing

4 L. dp@)
} TR CORS S vy

n,L, 7 ™
2n,M [(2)

—sina

cosx

where f,'()is the inverse of the magnetization curve
function of the induction motor. In (7), the nominal values of

L
L, and M are used. This is reasonable since — = 1+0,,

M
where o, is the rotor leakage factor [12], and the change in

0, due to the saturation is neglected. _
For the values of [(f)which remain in the linear

t
magnetic region, f,,' (B()) = —'B—A%)-with M constant so

that (7) reduces to (5).

Assuming the rotor flux tracks its reference value while
the motor is in the linear magnetic region, then, the flux
tracking error remains zero even if the magnitude of the
rotor flux vector is increased to the magnetic saturation
regions.

~ IV. SPEED ESTIMATOR

The passivity-based controller requires the knowledge of
the motor speed and position to achieve speed/position
tracking control. In a typical experimental setup, only




|

position measurements are available through an optical
encoder and hence, a speed estimator must be implemented

in real-time to estimate the speed.
The easiest way to estimate the speed is the numerical

differentiation of the position outputs from the optical
encoder. That is,

o(nT) - 6((n - 1)T)
T

where @ is the estimated speed, T 'is the sample period and
9(nT ) is the position measurement at f = nT . However, a

®

@ =

T
2880 pulses per revolution (resolution of 2880 radians)

encoder is used in the experimental setup and computing
@by (8) may cause an error in the speed estimate up to
27
28807
Lorenz and Patten [13] and Bodson, Chiasson and

Novotnak [14] proposed, and also experimentally verified,
speed estimators based on the dynamic model of the motor

and the positions measurements. In this paper, the following

speed estimator was used [13] :

%g- = 6+1,(0-9) )
‘2—‘:=1J-__§a3+12(9—é) (10)

where, again ®is the estimate of the speed, @is the
estimate of the gosition, and l1 , 1, are the estimator gains.

Fig. 1 shows a block diagram for the passivity-based
control of the induction motor.

V. OrPTIMAL FLUX TRAJECTORY
Bodson, Chiasson and Novotnak [1, 2] and Novotnak [3]
introduced, and also experimentally verified, time-varying
optimal flux trajectories to extract maximum positive torque
during acceleration (motor mode) and minimum negative
torque during deceleration (generator mode) from the
induction motor under the voltage and/or current constraints.

In this paper, 3(f) , the magnitude of the rotor flux vector,
was chosen as the solution of

d o
%Zz Mq(- £1B@) + #ﬁ(t); (@) 'da; )
@an

) R, N 2n,M
where TP=T H= 1, JL,

and &, (@")is the

solution to the saturated magnetics optimal torque problem
(2,3} '

VI. EXPERIMENTAL RESULTS

Current-command passivity-based controller (7) was
tested on an experimental setup which consisted of (i) a 3-
phase, 6-pole; 1-Hp, squirrel cage induction motor, (ii) a
Motorola DSP96002 (floating point processor) ADS system,
(iii) a data acquisition board, and (iv) three 20 kHz PWM
amplifiers (£150Volts and =+ 10 Amperes). The
parameters of the induction motor are listed in Table I. The
position measurements were obtained through a 2880 pulses

per revolution (resolution of radians) line encoder.

2880
TABLE I

INDUCTION MOTOR PARAMETERS

M 0.225H

L, 0244 H

L, 0.244H

R. 210

R, 1.85Q

J 0.0185 N-m-s

f 0.0 N-m/rad/sec

Fig. 2 shows the magnetization curve of the induction
motor whigh was determined by Novotnak [3].

In the experiment, a point-to-point position move was
carried out in which the motor was accelerated from the rest
to a speed of 170 radians per second in 0.486 seconds and
decelerated from 170 radians per second to Oradians per
second in 0.449 seconds. This type of mechanical trajectory
was chosen since it requires 90% of the maximum positive
torque achievable by the motor used in the experiment under
the voltage and current limits [2, 3].That is, the motor must
produce close to the maximum torque to accelerate from the
rest to 170 radians per second in 0.486 seconds. The
magnitude of the reference rotor flux vector was chosen as
the solution of (11).

Fig. 3 shows estimated speed @and reference speed
@" (the two are so close that they are indistinguishable in

the figure). Fig. 4 is a plot of speed error ®-w". Fig. 5

shows measured position @and reference position
t . ’
0 :Jow dt( the two are so close that they are

indistinguishable in the figure). Fig. 6 is a plot of position




error @—0° . Note that in Fig. 6, the final position error is

2
one encoder count ( 1 count = ————radians), that is, within

2880

the encoder resolution. The position error during the entire
move is within 21 encoder counts. In brief, a close tracking
of time-varying speed and position trajectories was achieved.

To achieve the maximum torque at the beginning of the
move, the rotor flux must be at its maximum value [2, 3].
Therefore, the rotor flux was ramped up from zero to its
maximum value of 11Webers before the motor was
commanded to move at ¢ = 0.125seconds. Fig. 7 shows the
magnitudes of the estimated rotor flux vector and reference
rotor flux vector. The rotor flux vector was estimated off-line
by solving the following equation:

) | ~
A

~

A,

~

d\,, 1Qr1x4'.f}71(

+ ~
dt L, A,

RM),

dg L Lag
r

(12)

where the components of i, were collected from the

experiment.
VII. CONCLUSIONS

In this paper, we designed, and also experimentally
verified, a current-command passivity-based controller that
forces an induction motor which has significant magnetic
saturation to track time-varying speed/position and flux
trajectories without knowledge of the rotor electrical state
variables. Also, we used a speed estimator, which is based on
the dynamic model of the induction motor and the position
measurements, to remove the need of measuring the motor
speed.
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Fig. 1. Block diagram for the current-command passivity-based control of the induction motor.
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Fig. 2. Magnetization curve of the induction motor.
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Fig. 3. Estimated (solid) and reference (dashed) speeds in
radians per second versus time in seconds.
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Fig. 5. Measured (solid) and reference (dashed) positions
in radians versus time in seconds.

Fig. 6. Position error in encoder counts versus time ir
seconds (1 count = 27 / 2880 radians).
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